The need for faster and more miniaturized electronics is challenging scientists to develop novel forms of electronics based on quantum degrees of freedom different from electron charge. In this fast-developing field, often referred to as quantum electronics, the metal-oxide perovskite SrRuO3 can play an important role thanks to its diverse physical properties, which have been intensively investigated, mostly for conventional electronics. In addition to being chemically stable, easy to fabricate with high quality and to grow epitaxially onto many oxides - these are all desirable properties also for conventional electronics - SrRuO3 has interesting properties for quantum electronics like itinerant ferromagnetism and metallic behavior, strong correlation between magnetic anisotropy and spin-orbit coupling, strain-tunable magnetization, and anomalous Hall and Berry effects. In this Perspective, after describing the main phenomena emerging from the interplay between spin, orbital, lattice, and topological quantum degrees of freedom in SrRuO3, we discuss the challenges still open to achieve control over these phenomena. We then provide our perspectives on the most promising applications of SrRuO3 for devices for conventional and quantum electronics. We suggest new device configurations and discuss the materials challenges for their realization. For conventional electronics, we single out applications where SrRuO3 devices can bring competitive advantages over existing ones. For quantum electronics, we propose devices that can help gain a deeper understanding of quantum effects in SrRuO3 to exploit them for quantum technologies. We finally give an outlook about properties of SrRuO3 still waiting for discovery and applications that may stem from them. © 2022 Author(s).

Materials challenges for SrRuO3: From conventional to quantum electronics

Cuoco M
;
2022

Abstract

The need for faster and more miniaturized electronics is challenging scientists to develop novel forms of electronics based on quantum degrees of freedom different from electron charge. In this fast-developing field, often referred to as quantum electronics, the metal-oxide perovskite SrRuO3 can play an important role thanks to its diverse physical properties, which have been intensively investigated, mostly for conventional electronics. In addition to being chemically stable, easy to fabricate with high quality and to grow epitaxially onto many oxides - these are all desirable properties also for conventional electronics - SrRuO3 has interesting properties for quantum electronics like itinerant ferromagnetism and metallic behavior, strong correlation between magnetic anisotropy and spin-orbit coupling, strain-tunable magnetization, and anomalous Hall and Berry effects. In this Perspective, after describing the main phenomena emerging from the interplay between spin, orbital, lattice, and topological quantum degrees of freedom in SrRuO3, we discuss the challenges still open to achieve control over these phenomena. We then provide our perspectives on the most promising applications of SrRuO3 for devices for conventional and quantum electronics. We suggest new device configurations and discuss the materials challenges for their realization. For conventional electronics, we single out applications where SrRuO3 devices can bring competitive advantages over existing ones. For quantum electronics, we propose devices that can help gain a deeper understanding of quantum effects in SrRuO3 to exploit them for quantum technologies. We finally give an outlook about properties of SrRuO3 still waiting for discovery and applications that may stem from them. © 2022 Author(s).
2022
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
quantum electronics
SrRuO3 metal oxide
spin-orbital-charge lattice interactions
File in questo prodotto:
File Dimensione Formato  
090902_1_5.0100912.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 13.45 MB
Formato Adobe PDF
13.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/414507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact