In this paper, we report on an in-depth study on the growth of nickel silicides, either on a clean Ni(111) substrate or in the presence of a previously-grown epitaxial single graphene (Gr) layer, by means of Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and scanning tunneling microscopy (STM). We demonstrate that two different nickel silicides, namely Ni3Si and Ni2Si, progressively form as the annealing temperature is increased from 450 °C to 600 °C. The presence of the Gr layer does not change the nature of the two silicide phases but rather affects the morphology of the silicide overlayer. Indeed, in the presence of Gr, the deposited silicon atoms intercalate by passing through the Gr defects or domain boundaries and accumulate on specific sample areas, resulting in the formation of multilayer silicide islands. In the absence of Gr, the deposited silicon atoms react uniformly with the nickel substrate, resulting in the formation of homogeneous large scale silicide layers.

Effects of an epitaxial graphene layer for the growth of nickel silicides on a Ni(111) substrate

Fabio Ronci
Primo
;
Stefano Colonna;Roberto Flammini;
2022

Abstract

In this paper, we report on an in-depth study on the growth of nickel silicides, either on a clean Ni(111) substrate or in the presence of a previously-grown epitaxial single graphene (Gr) layer, by means of Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and scanning tunneling microscopy (STM). We demonstrate that two different nickel silicides, namely Ni3Si and Ni2Si, progressively form as the annealing temperature is increased from 450 °C to 600 °C. The presence of the Gr layer does not change the nature of the two silicide phases but rather affects the morphology of the silicide overlayer. Indeed, in the presence of Gr, the deposited silicon atoms intercalate by passing through the Gr defects or domain boundaries and accumulate on specific sample areas, resulting in the formation of multilayer silicide islands. In the absence of Gr, the deposited silicon atoms react uniformly with the nickel substrate, resulting in the formation of homogeneous large scale silicide layers.
2022
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Graphene
Nickel
Nickel silicide
Auger electron spectroscopy
Low energy electron diffraction
Scanning tunneling microscopy
File in questo prodotto:
File Dimensione Formato  
Effects of an epitaxial graphene layer for the growth of nickel silicides on a Ni(111) substrate - prod_474859-doc_193859.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 8.03 MB
Formato Adobe PDF
8.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/414648
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact