Multilevel anticounterfeiting Physical Unclonable Function (PUF) tags based on thin film of silver (Ag), Zinc Oxide (ZnO) and PolyVinylPyrrolidone (PVP), are experimentally demonstrated and validated. We exploit the low adhesion of silver to glass and consequent degradation during ZnO deposition to induce morphological randomness. Several photographs of the tag surfaces have been collected with different illumination conditions and using two smartphones of diverse brand. The photos were analyzed using an image recognition algorithm revealing low common minutiae for different tags. Moreover, the optical response reveals peculiar spectra due to labels of plasmonic nature. The proposed systems can be easily fabricated on large areas and represent a cost-effective solution for practical protection of objects.
Low Cost and Easy Validation Anticounterfeiting Plasmonic Tags Based on Thin Films of Metal and Dielectric
Ferraro A;Papuzzo G;Forestiero A;
2022
Abstract
Multilevel anticounterfeiting Physical Unclonable Function (PUF) tags based on thin film of silver (Ag), Zinc Oxide (ZnO) and PolyVinylPyrrolidone (PVP), are experimentally demonstrated and validated. We exploit the low adhesion of silver to glass and consequent degradation during ZnO deposition to induce morphological randomness. Several photographs of the tag surfaces have been collected with different illumination conditions and using two smartphones of diverse brand. The photos were analyzed using an image recognition algorithm revealing low common minutiae for different tags. Moreover, the optical response reveals peculiar spectra due to labels of plasmonic nature. The proposed systems can be easily fabricated on large areas and represent a cost-effective solution for practical protection of objects.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.