The Lanterman Fault Zone, a major terrane boundary in northern Victoria Land, displays a polyphase structural evolution. After west-over-east thrusting, it experienced sinistral strike-slip shearing. Sheared metabasites from the Wilson Terrane (inboard terrane) preserve a record of retrograde metamorphic evolution. Shearing took place under amphibolite-facies metamorphic conditions (roughly comparable to those reached during regional metamorphism) which later evolved to greenschist-facies conditions. In contrast, the Bowers Terrane (outboard terrane) preserves a prograde metamorphic evolution which developed from greenschist-facies to amphibolite-facies metamorphism during shearing, followed by greenschist-facies metamorphism during the late deformational stages. Laser step-heating 40Ar-39Ar analyses of syn-shear amphibolite-facies amphiboles yielded ages of 480-460 Ma, in agreement with a 480-Ma age obtained from a biotite aligned along the mylonitic foliation. These ages are younger than those (492 to 495 Ma) obtained from pre-shear amphibole relics linked to regional metamorphism of the Wilson Terrane. Results attribute the structural and metamorphic reworking during shearing to the late stages of the Cambrian-Ordovician Ross Orogeny and to the Middle-Late Ordovician probably in relation to the beginning of deformation in the Lachlan Orogen, thus precluding any appreciable impact of the Devonian-Carboniferous Borchgrevink event in the study area.
Petrology and 40Ar 39Ar dating of shear zones in the Lanterman Range (northern Victoria Land, Antarctica): implications for metamorphic and temporal evolution at the terrane boundaries.
Di Vincenzo G;
2007
Abstract
The Lanterman Fault Zone, a major terrane boundary in northern Victoria Land, displays a polyphase structural evolution. After west-over-east thrusting, it experienced sinistral strike-slip shearing. Sheared metabasites from the Wilson Terrane (inboard terrane) preserve a record of retrograde metamorphic evolution. Shearing took place under amphibolite-facies metamorphic conditions (roughly comparable to those reached during regional metamorphism) which later evolved to greenschist-facies conditions. In contrast, the Bowers Terrane (outboard terrane) preserves a prograde metamorphic evolution which developed from greenschist-facies to amphibolite-facies metamorphism during shearing, followed by greenschist-facies metamorphism during the late deformational stages. Laser step-heating 40Ar-39Ar analyses of syn-shear amphibolite-facies amphiboles yielded ages of 480-460 Ma, in agreement with a 480-Ma age obtained from a biotite aligned along the mylonitic foliation. These ages are younger than those (492 to 495 Ma) obtained from pre-shear amphibole relics linked to regional metamorphism of the Wilson Terrane. Results attribute the structural and metamorphic reworking during shearing to the late stages of the Cambrian-Ordovician Ross Orogeny and to the Middle-Late Ordovician probably in relation to the beginning of deformation in the Lachlan Orogen, thus precluding any appreciable impact of the Devonian-Carboniferous Borchgrevink event in the study area.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


