Hybrid organic-inorganic perovskite (HOIP) ferroelectrics are attracting considerable interest because of their high performance, ease of synthesis, and lightweight. However, the intrinsic thermodynamic origins of their ferroelectric transitions remain insufficiently understood. Here, we identify the nature of the ferroelectric phase transitions in displacive [(CH3)2NH2][Mn(N3)3] and order-disorder type [(CH3)2NH2][Mn(HCOO)3] via spatially resolved structural analysis and ab initio lattice dynamics calculations. Our results demonstrate that the vibrational entropy change of the extended perovskite lattice drives the ferroelectric transition in the former and also contributes importantly to that of the latter along with the rotational entropy change of the A-site. This finding not only reveals the delicate atomic dynamics in ferroelectric HOIPs but also highlights that both the local and extended fluctuation of the hybrid perovskite lattice can be manipulated for creating ferroelectricity by taking advantages of their abundant atomic, electronic, and phononic degrees of freedom.

Origin of Ferroelectricity in Two Prototypical Hybrid Organic-Inorganic Perovskites

Stroppa A;
2022

Abstract

Hybrid organic-inorganic perovskite (HOIP) ferroelectrics are attracting considerable interest because of their high performance, ease of synthesis, and lightweight. However, the intrinsic thermodynamic origins of their ferroelectric transitions remain insufficiently understood. Here, we identify the nature of the ferroelectric phase transitions in displacive [(CH3)2NH2][Mn(N3)3] and order-disorder type [(CH3)2NH2][Mn(HCOO)3] via spatially resolved structural analysis and ab initio lattice dynamics calculations. Our results demonstrate that the vibrational entropy change of the extended perovskite lattice drives the ferroelectric transition in the former and also contributes importantly to that of the latter along with the rotational entropy change of the A-site. This finding not only reveals the delicate atomic dynamics in ferroelectric HOIPs but also highlights that both the local and extended fluctuation of the hybrid perovskite lattice can be manipulated for creating ferroelectricity by taking advantages of their abundant atomic, electronic, and phononic degrees of freedom.
2022
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN - Sede Secondaria L'Aquila
metal-organic frameworks
ferroelectricity
group-theory
File in questo prodotto:
File Dimensione Formato  
prod_474147-doc_193360.pdf

solo utenti autorizzati

Descrizione: Origin of Ferroelectricity in Two Prototypical Hybrid Organic-Inorganic Perovskites
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.5 MB
Formato Adobe PDF
3.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/415001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 64
social impact