In this paper, we propose an extensive evaluation of the first text-to-text Italian Neural Language Model (NLM), IT5 [1], on a classification scenario. In particular, we test the performance of IT5 on several tasks involving both the classification of the topic and the style of a set of Italian posts. We assess the model in two different configurations, single- and multi-task classification, and we compare it with a more traditional NLM based on the Transformer architecture (i.e. BERT). Moreover, we test its performance in a few-shot learning scenario. We also perform a qualitative investigation on the impact of label representations in modeling the classification of the IT5 model. Results show that IT5 could achieve good results, although generally lower than the BERT model. Nevertheless, we observe a significant performance improvement of the Text-to-text model in a multi-task classification scenario. Finally, we found that altering the representation of the labels mainly impacts the classification of the topic.

Evaluating Text-To-Text Framework for Topic and Style Classification of Italian texts

Miaschi Alessio;Dell'Orletta Felice
2022

Abstract

In this paper, we propose an extensive evaluation of the first text-to-text Italian Neural Language Model (NLM), IT5 [1], on a classification scenario. In particular, we test the performance of IT5 on several tasks involving both the classification of the topic and the style of a set of Italian posts. We assess the model in two different configurations, single- and multi-task classification, and we compare it with a more traditional NLM based on the Transformer architecture (i.e. BERT). Moreover, we test its performance in a few-shot learning scenario. We also perform a qualitative investigation on the impact of label representations in modeling the classification of the IT5 model. Results show that IT5 could achieve good results, although generally lower than the BERT model. Nevertheless, we observe a significant performance improvement of the Text-to-text model in a multi-task classification scenario. Finally, we found that altering the representation of the labels mainly impacts the classification of the topic.
2022
Istituto di linguistica computazionale "Antonio Zampolli" - ILC
bert
style classification
t5
text-to-text
topic classification
transformers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/415084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact