To improve the metabolic stability of a 4,4'-oxybisbenzoyl-based novel and potent (nanomolar-range IC<sub>50</sub> ) antiplasmodial agent previously described by us, in silico-guided structure-activity relationship (SAR) campaigns have been conducted to substitute its peptide decorations with more metabolically stable residues. The effects of the various structural modifications were then correlated with the antiplasmodial activity in vitro in phenotypic assays. Among the several derivatives synthetized and compared with the 3D-pharmacophoric map of the original lead, a novel compound, characterized by a western tert-butyl glycine residue and an eastern 1S,2S-aminoacyclohexanol, showed low-nanomolar-range antiplasmodial activity, no signs of cross-resistance and, most importantly, 47-fold improved Phase I metabolic stability when incubated with human liver microsomes. These results highlight the efficacy of in silico-guided SAR campaigns which will allow us to further optimize the structure of the new lead aiming at testing its efficacy in vivo using different routes of administration.

From DC18 to MR07: A Metabolically Stable 4,4'-Oxybisbenzoyl Amide as a Low-Nanomolar Growth Inhibitor of P. falciparum

Ivan Bassanini;
2022

Abstract

To improve the metabolic stability of a 4,4'-oxybisbenzoyl-based novel and potent (nanomolar-range IC50 ) antiplasmodial agent previously described by us, in silico-guided structure-activity relationship (SAR) campaigns have been conducted to substitute its peptide decorations with more metabolically stable residues. The effects of the various structural modifications were then correlated with the antiplasmodial activity in vitro in phenotypic assays. Among the several derivatives synthetized and compared with the 3D-pharmacophoric map of the original lead, a novel compound, characterized by a western tert-butyl glycine residue and an eastern 1S,2S-aminoacyclohexanol, showed low-nanomolar-range antiplasmodial activity, no signs of cross-resistance and, most importantly, 47-fold improved Phase I metabolic stability when incubated with human liver microsomes. These results highlight the efficacy of in silico-guided SAR campaigns which will allow us to further optimize the structure of the new lead aiming at testing its efficacy in vivo using different routes of administration.
2022
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
Antimalarials; In silico pharmacophore mapping; In vitro metabolic stability; Malaria; Plasmodium falciparum
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/415167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact