Multi-temporal SAR interferometry (MTInSAR), by providing both mean displacement maps and displacement time series over coherent objects on the Earth's surface, allows analyzing wide areas, identifying ground displacements, and studying the phenomenon evolution at a long time scale. This technique has also been proven to be very useful for detecting and monitoring slope instabilities. For this type of hazard, detection of velocity variations over short time intervals should be useful for early warning of damaging events. In this work, we present the results obtained by using both COSMO-SkyMed (CSK) and Sentinel-1 (S1) data for investigating the ground stability of two hilly villages located in the Southern Italian Apennines (Basilicata region), namely the towns of Montescaglioso and Pomarico. In these two municipalities, landslides occurred in the recent past (in Montescaglioso in 2013) and more recently (in Pomarico in 2019), causing damage to houses, commercial buildings, and infrastructures. SAR datasets acquired by CSK and S1 from both ascending and descending orbits were processed using the SPINUA MTInSAR algorithm. Mean velocity maps and displacement time series were analyzed, also by means of innovative ad hoc procedures, looking, in particular, for non-linear trends. Results evidenced the presence of nonlinear displacements in correspondence of some key infrastructures. In particular, the analysis of accelerations and decelerations of PS objects corresponding to structures affected by recent stabilization measures helps to shed new light in relation to known events that occurred in the area of interest.

Assessing the Potential of Long, Multi-Temporal SAR Interferometry Time Series for Slope Instability Monitoring: Two Case Studies in Southern Italy

Bovenga F;Argentiero I;Refice A;Pasquariello G;Spilotro G
2022

Abstract

Multi-temporal SAR interferometry (MTInSAR), by providing both mean displacement maps and displacement time series over coherent objects on the Earth's surface, allows analyzing wide areas, identifying ground displacements, and studying the phenomenon evolution at a long time scale. This technique has also been proven to be very useful for detecting and monitoring slope instabilities. For this type of hazard, detection of velocity variations over short time intervals should be useful for early warning of damaging events. In this work, we present the results obtained by using both COSMO-SkyMed (CSK) and Sentinel-1 (S1) data for investigating the ground stability of two hilly villages located in the Southern Italian Apennines (Basilicata region), namely the towns of Montescaglioso and Pomarico. In these two municipalities, landslides occurred in the recent past (in Montescaglioso in 2013) and more recently (in Pomarico in 2019), causing damage to houses, commercial buildings, and infrastructures. SAR datasets acquired by CSK and S1 from both ascending and descending orbits were processed using the SPINUA MTInSAR algorithm. Mean velocity maps and displacement time series were analyzed, also by means of innovative ad hoc procedures, looking, in particular, for non-linear trends. Results evidenced the presence of nonlinear displacements in correspondence of some key infrastructures. In particular, the analysis of accelerations and decelerations of PS objects corresponding to structures affected by recent stabilization measures helps to shed new light in relation to known events that occurred in the area of interest.
2022
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
SAR Interferometry
Ground instability
Landslides
Time series analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/415322
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact