The PRIMA test facility, under realization in Padova, includes a full size plasma source prototype for ITER, called SPIDER (Source for the Production of Ions of Deuterium Extracted from Radio Frequency plasma). The effects of breakdown in the electrical insulation inside the ion source are analyzed with particular care to the embedded diagnostic system, i.e. the thermal and electrical measurements installed on the grids and ion source case and transferred by multipolar cables to the acquisition system, located inside the 100 kV insulated deck and hosting the ion source power supply, the signal conditioning and the acquisition cubicles. The breakdown affects strongly the measurements, so it has to be mitigated in order to guarantee adequate reliability of the whole measurement set. A parametric study has been carried out on a detailed circuital model for fast transients, implemented using SimPowerSystems(TM) tool of Matlab Simulink® code. The model includes all the relevant conductors of the subsystems downstream the insulating transformer of the Accelerating Grids Power Supply (AGPS), i.e. the AGPS rectifier, the multipolar transmission line, the 100 kV High Voltage Deck, the ion source power supply and the ion source itself. In particular all the magnetic and capacitive couplings have been computed by a proper 2D fem model. The optimization of the cabling layout, of the wire screening and of the protection devices, like surge arresters and resistors, has been carried out through the accurate modeling of the circuit. The energy dissipated on each ion source surge arrester is estimated and adequate TSD (transient suppression devices) are selected. A peculiar and difficult to satisfy requirement is the high number of surges that the TSD has to withstand. Breakdowns between components polarized at different voltages have been considered, in order to inspect the worst condition during a breakdown.

Analysis of breakdown on thermal and electrical measurements for SPIDER accelerating grids

Alberto Pesce;Nicola Pomaro
2011

Abstract

The PRIMA test facility, under realization in Padova, includes a full size plasma source prototype for ITER, called SPIDER (Source for the Production of Ions of Deuterium Extracted from Radio Frequency plasma). The effects of breakdown in the electrical insulation inside the ion source are analyzed with particular care to the embedded diagnostic system, i.e. the thermal and electrical measurements installed on the grids and ion source case and transferred by multipolar cables to the acquisition system, located inside the 100 kV insulated deck and hosting the ion source power supply, the signal conditioning and the acquisition cubicles. The breakdown affects strongly the measurements, so it has to be mitigated in order to guarantee adequate reliability of the whole measurement set. A parametric study has been carried out on a detailed circuital model for fast transients, implemented using SimPowerSystems(TM) tool of Matlab Simulink® code. The model includes all the relevant conductors of the subsystems downstream the insulating transformer of the Accelerating Grids Power Supply (AGPS), i.e. the AGPS rectifier, the multipolar transmission line, the 100 kV High Voltage Deck, the ion source power supply and the ion source itself. In particular all the magnetic and capacitive couplings have been computed by a proper 2D fem model. The optimization of the cabling layout, of the wire screening and of the protection devices, like surge arresters and resistors, has been carried out through the accurate modeling of the circuit. The energy dissipated on each ion source surge arrester is estimated and adequate TSD (transient suppression devices) are selected. A peculiar and difficult to satisfy requirement is the high number of surges that the TSD has to withstand. Breakdowns between components polarized at different voltages have been considered, in order to inspect the worst condition during a breakdown.
2011
Istituto gas ionizzati - IGI - Sede Padova
Breakdown protection
ITER
Neutral beam injector
SPIDER
Transient suppression device
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/41559
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact