Fat-corrected R2* relaxometry from multi-echo gradient-recalled echo sequences (mGRE) could represent an efficient approach for iron overload evaluation, but its use is limited by computational constraints. A new method for the fast generation of R2* and fat fractions (FF) maps from mGRE using a convolutional neural network (U-Net) and deep learning (DL) is presented. A U-Net for the calculation of pancreatic R2* and FF maps was trained with 576 mGRE abdominal images and compared to conventional fat-corrected relaxometry. The U-Net was effectively trained and provided R2* and FF maps visually comparable to conventional methods. Predicted pancreatic R2* and FF values were well correlated with the conventional model. Estimated and ground truth mean R2* values were not significantly different (43.65 +/- 21.89 vs. 43.77 +/- 19.81 ms, p = 0.692, intraclass correlation coefficient-ICC = 0.9938, coefficient of variation-CoV = 5.3%), while estimated FF values were slightly higher in respect to ground truth values (27.8 +/- 16.87 vs. 25.67 +/- 15.43 %, p < 0.0001, ICC = 0.986, CoV = 10.1%). Deep learning utilizing the U-Net is a feasible method for pancreatic MR fat-corrected relaxometry. A trained U-Net can be efficiently used for MR fat-corrected relaxometry, providing results comparable to conventional model-based methods.

Fat-Corrected Pancreatic R2* Relaxometry from Multi-Echo Gradient-Recalled Echo Sequence Using Convolutional Neural Network

Santarelli Maria Filomena;
2022

Abstract

Fat-corrected R2* relaxometry from multi-echo gradient-recalled echo sequences (mGRE) could represent an efficient approach for iron overload evaluation, but its use is limited by computational constraints. A new method for the fast generation of R2* and fat fractions (FF) maps from mGRE using a convolutional neural network (U-Net) and deep learning (DL) is presented. A U-Net for the calculation of pancreatic R2* and FF maps was trained with 576 mGRE abdominal images and compared to conventional fat-corrected relaxometry. The U-Net was effectively trained and provided R2* and FF maps visually comparable to conventional methods. Predicted pancreatic R2* and FF values were well correlated with the conventional model. Estimated and ground truth mean R2* values were not significantly different (43.65 +/- 21.89 vs. 43.77 +/- 19.81 ms, p = 0.692, intraclass correlation coefficient-ICC = 0.9938, coefficient of variation-CoV = 5.3%), while estimated FF values were slightly higher in respect to ground truth values (27.8 +/- 16.87 vs. 25.67 +/- 15.43 %, p < 0.0001, ICC = 0.986, CoV = 10.1%). Deep learning utilizing the U-Net is a feasible method for pancreatic MR fat-corrected relaxometry. A trained U-Net can be efficiently used for MR fat-corrected relaxometry, providing results comparable to conventional model-based methods.
2022
Istituto di Fisiologia Clinica - IFC
convolutional neural network
fat-corrected relaxometry
pancreas
iron overload
U-Net
File in questo prodotto:
File Dimensione Formato  
Santarelli_electronics2022.pdf

accesso aperto

Descrizione: Fat-Corrected Pancreatic R2* Relaxometry from Multi-Echo Gradient-Recalled Echo Sequence Using Convolutional Neural Network
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/415652
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact