An unexpected promoting effect of KBr, used as a diluting salt, on the degradation of picric acid (PA) was observed during in situ diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy experiments performed here under accelerated ageing conditions--at 80 C and under an inert or oxidative atmosphere. While the formation of potassium picrate was excluded, this promoting effect--which is undesired as it masks the possible effects of test conditions on the ageing process of the material--was assumed to favor a first step of the decomposition mechanism of PA, which involves the inter- or intramolecular transfer of hydrogen to the nitro group, and possibly proceeds up to the formation of an amino group. An alternative diluting salt, ZnSe, which is much less commonly used in infrared spectroscopy than KBr, was then proposed in order to avoid misleading interpretation of the results. ZnSe was found to act as a truly inert diluting salt, preventing the promoting effect of KBr. The much more chemically inert nature (towards PA) of ZnSe compared to KBr was also confirmed, at much higher temperatures than DRIFT experiments, by dynamic differential scanning calorimetry (DSC) runs carried out on pure PA (i.e., PA without salt) and PA/salt (ZnSe or KBr) solid mixtures.
The Combined Effect of Ambient Conditions and Diluting Salt on the Degradation of Picric Acid: An In Situ DRIFT Study
Roberto Sanchirico;Luciana Lisi;Valeria Di Sarli
2022
Abstract
An unexpected promoting effect of KBr, used as a diluting salt, on the degradation of picric acid (PA) was observed during in situ diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy experiments performed here under accelerated ageing conditions--at 80 C and under an inert or oxidative atmosphere. While the formation of potassium picrate was excluded, this promoting effect--which is undesired as it masks the possible effects of test conditions on the ageing process of the material--was assumed to favor a first step of the decomposition mechanism of PA, which involves the inter- or intramolecular transfer of hydrogen to the nitro group, and possibly proceeds up to the formation of an amino group. An alternative diluting salt, ZnSe, which is much less commonly used in infrared spectroscopy than KBr, was then proposed in order to avoid misleading interpretation of the results. ZnSe was found to act as a truly inert diluting salt, preventing the promoting effect of KBr. The much more chemically inert nature (towards PA) of ZnSe compared to KBr was also confirmed, at much higher temperatures than DRIFT experiments, by dynamic differential scanning calorimetry (DSC) runs carried out on pure PA (i.e., PA without salt) and PA/salt (ZnSe or KBr) solid mixtures.File | Dimensione | Formato | |
---|---|---|---|
prod_470414-doc_190790.pdf
accesso aperto
Descrizione: The Combined Effect of Ambient Conditions and Diluting Salt on the Degradation of Picric Acid: An In Situ DRIFT Study
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.88 MB
Formato
Adobe PDF
|
2.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.