The concept of optical exciton-a photoexcited bound electron-hole pair within a crystal-is routinely used to interpret and model a wealth of excited-state phenomena in semiconductors. Beside originating subband gap signatures in optical spectra, optical excitons have also been predicted to condensate, diffuse, recombine, and relax. However, all these phenomena are rooted on a theoretical definition of the excitonic state based on the following simple picture: "excitons " are actual particles that both appear as peaks in the linear absorption spectrum and also behave as well-defined quasiparticles. In this paper, we show, instead, that the electron-phonon interaction decomposes the initial optical (i.e., "reducible ") excitons into elemental (i.e., "irreducible ") excitons, the latter being a different kind of bound electron-hole pairs lacking the effect caused by the induced, classical, electric field. This is demonstrated within a real-time, many-body perturbation theory approach starting from the interacting electronic Hamiltonian including both electron-phonon and electron-hole interactions. We then apply the results to two realistic and paradigmatic systems, monolayer MoS2 (where the lowest-bound optical exciton is optically inactive) and monolayer MoSe2 (where it is optically active), using first-principles methods to compute the exciton-phonon coupling matrix elements. Among the consequences of optical-elemental decomposition, we point to a homogeneous broadening of absorption peaks occurring even for the lowest-bound optical exciton , and we demonstrate this by computing exciton-phonon transition rates. More generally, our findings suggest that the optical excitons gradually lose their initial structure and evolve as elemental excitons. These states can be regarded as the real intrinsic excitations of the interacting system, the ones that survive when the external perturbation and the induced electric fields have vanished.

Exciton-phonon interaction calls for a revision of the exciton concept

Paleari Fulvio
;
Marini Andrea
2022

Abstract

The concept of optical exciton-a photoexcited bound electron-hole pair within a crystal-is routinely used to interpret and model a wealth of excited-state phenomena in semiconductors. Beside originating subband gap signatures in optical spectra, optical excitons have also been predicted to condensate, diffuse, recombine, and relax. However, all these phenomena are rooted on a theoretical definition of the excitonic state based on the following simple picture: "excitons " are actual particles that both appear as peaks in the linear absorption spectrum and also behave as well-defined quasiparticles. In this paper, we show, instead, that the electron-phonon interaction decomposes the initial optical (i.e., "reducible ") excitons into elemental (i.e., "irreducible ") excitons, the latter being a different kind of bound electron-hole pairs lacking the effect caused by the induced, classical, electric field. This is demonstrated within a real-time, many-body perturbation theory approach starting from the interacting electronic Hamiltonian including both electron-phonon and electron-hole interactions. We then apply the results to two realistic and paradigmatic systems, monolayer MoS2 (where the lowest-bound optical exciton is optically inactive) and monolayer MoSe2 (where it is optically active), using first-principles methods to compute the exciton-phonon coupling matrix elements. Among the consequences of optical-elemental decomposition, we point to a homogeneous broadening of absorption peaks occurring even for the lowest-bound optical exciton , and we demonstrate this by computing exciton-phonon transition rates. More generally, our findings suggest that the optical excitons gradually lose their initial structure and evolve as elemental excitons. These states can be regarded as the real intrinsic excitations of the interacting system, the ones that survive when the external perturbation and the induced electric fields have vanished.
2022
Istituto Nanoscienze - NANO
Istituto Nanoscienze - NANO
Istituto di Struttura della Materia - ISM - Sede Secondaria Montelibretti
Absorption spectroscopy, Computation theory, Electric fields, Electrons, Excited states, Layered semiconductors, Molybdenum compounds, Monolayers, Perturbation techniques, Selenium compounds, Sulfur compounds
File in questo prodotto:
File Dimensione Formato  
PhysRevB.106.125403.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2205.02783v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/416084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact