Projections of extreme precipitation based on modern climate models suffer from large uncertainties. Specifically, unresolved physics and natural variability limit the ability of climate models to provide actionable information on impacts and risks at the regional, watershed and city scales relevant for practical applications. Here, we show that the interaction of precipitating systems with local features can constrain the statistical description of extreme precipitation. These observational constraints can be used to project local extremes of low yearly exceedance probability (e.g., 100-year events) using synoptic-scale information from climate models, which is generally represented more accurately than the local scales, and without requiring climate models to explicitly resolve extremes. The novel approach, demonstrated here over the south-eastern Mediterranean, offers a path for improving the predictability of local statistics of extremes in a changing climate, independent of pending improvements in climate models at regional and local scales.
Towards narrowing uncertainty in future projections of local extreme precipitation
Marra F;
2021
Abstract
Projections of extreme precipitation based on modern climate models suffer from large uncertainties. Specifically, unresolved physics and natural variability limit the ability of climate models to provide actionable information on impacts and risks at the regional, watershed and city scales relevant for practical applications. Here, we show that the interaction of precipitating systems with local features can constrain the statistical description of extreme precipitation. These observational constraints can be used to project local extremes of low yearly exceedance probability (e.g., 100-year events) using synoptic-scale information from climate models, which is generally represented more accurately than the local scales, and without requiring climate models to explicitly resolve extremes. The novel approach, demonstrated here over the south-eastern Mediterranean, offers a path for improving the predictability of local statistics of extremes in a changing climate, independent of pending improvements in climate models at regional and local scales.| File | Dimensione | Formato | |
|---|---|---|---|
|
Geophysical Research Letters - 2021 - Marra - Toward Narrowing Uncertainty in Future Projections of Local Extreme.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.53 MB
Formato
Adobe PDF
|
1.53 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
606815submittedvers-marra.pdf
accesso aperto
Descrizione: This in the Submitted Version of the article published in https://doi.org/10.1029/2020GL091823
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
3.23 MB
Formato
Adobe PDF
|
3.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


