Projections of extreme precipitation based on modern climate models suffer from large uncertainties. Specifically, unresolved physics and natural variability limit the ability of climate models to provide actionable information on impacts and risks at the regional, watershed and city scales relevant for practical applications. Here, we show that the interaction of precipitating systems with local features can constrain the statistical description of extreme precipitation. These observational constraints can be used to project local extremes of low yearly exceedance probability (e.g., 100-year events) using synoptic-scale information from climate models, which is generally represented more accurately than the local scales, and without requiring climate models to explicitly resolve extremes. The novel approach, demonstrated here over the south-eastern Mediterranean, offers a path for improving the predictability of local statistics of extremes in a changing climate, independent of pending improvements in climate models at regional and local scales.

Towards narrowing uncertainty in future projections of local extreme precipitation

Marra F;
2021

Abstract

Projections of extreme precipitation based on modern climate models suffer from large uncertainties. Specifically, unresolved physics and natural variability limit the ability of climate models to provide actionable information on impacts and risks at the regional, watershed and city scales relevant for practical applications. Here, we show that the interaction of precipitating systems with local features can constrain the statistical description of extreme precipitation. These observational constraints can be used to project local extremes of low yearly exceedance probability (e.g., 100-year events) using synoptic-scale information from climate models, which is generally represented more accurately than the local scales, and without requiring climate models to explicitly resolve extremes. The novel approach, demonstrated here over the south-eastern Mediterranean, offers a path for improving the predictability of local statistics of extremes in a changing climate, independent of pending improvements in climate models at regional and local scales.
2021
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
climate change
extreme precipitation
climate adaptation
SMEV
File in questo prodotto:
File Dimensione Formato  
Geophysical Research Letters - 2021 - Marra - Toward Narrowing Uncertainty in Future Projections of Local Extreme.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
606815submittedvers-marra.pdf

accesso aperto

Descrizione: This in the Submitted Version of the article published in https://doi.org/10.1029/2020GL091823
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 3.23 MB
Formato Adobe PDF
3.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/416323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact