Aluminum Josephson junctions are the building blocks for the realization of superconducting quantum bits. Attention has been also paid to hybrid ferromagnetic Josephson junctions, which allow switching between different magnetic states, making them interesting for applications such as cryogenic memories, single-photon detectors, and spintronics. In this paper, we report on the fabrication and characterization of high-quality ferromagnetic Josephson junctions based on aluminum technology. We employed an innovative fabrication process inspired by niobium-based technology, allowing us to obtain very high-quality hybrid aluminum Josephson junctions; thus, supporting the use of ferromagnetic Josephson junctions in advanced quantum circuits. The fabrication process is described in detail and the main DC transport properties at low temperatures (current-voltage characteristic, critical current as a function of the temperature, and the external magnetic field) are reported. Here, we illustrate in detail the fabrication process, as well as the main DC transport properties at low temperatures (current-voltage characteristic, critical current as a function of the temperature, and the external magnetic field).

High-Quality Ferromagnetic Josephson Junctions Based on Aluminum Electrodes

Antonio Vettoliere;Halima Giovanna Ahmad;Giovanni Ausanio;Giovanni Piero Pepe;Francesco Tafuri;Davide Massarotti;Carmine Granata;Loredana Parlato
2022

Abstract

Aluminum Josephson junctions are the building blocks for the realization of superconducting quantum bits. Attention has been also paid to hybrid ferromagnetic Josephson junctions, which allow switching between different magnetic states, making them interesting for applications such as cryogenic memories, single-photon detectors, and spintronics. In this paper, we report on the fabrication and characterization of high-quality ferromagnetic Josephson junctions based on aluminum technology. We employed an innovative fabrication process inspired by niobium-based technology, allowing us to obtain very high-quality hybrid aluminum Josephson junctions; thus, supporting the use of ferromagnetic Josephson junctions in advanced quantum circuits. The fabrication process is described in detail and the main DC transport properties at low temperatures (current-voltage characteristic, critical current as a function of the temperature, and the external magnetic field) are reported. Here, we illustrate in detail the fabrication process, as well as the main DC transport properties at low temperatures (current-voltage characteristic, critical current as a function of the temperature, and the external magnetic field).
2022
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
aluminum Josephson junctions
hybrid ferromagnetic Josephson junction
quantum computing applications
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/416358
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact