High-power and narrow-linewidth laser light is a vital tool for atomic physics, being used for example in laser cooling and trapping and precision spectroscopy. Here we produce Watt-level laser radiation at 457.75 nm and 460.86 nm of respective relevance for the cooling transitions of cadmium and strontium atoms. This is achieved via the frequency doubling of a kHz-linewidth vertical-external-cavity surface-emitting laser (VECSEL), which is based on a novel gain chip design enabling lasing at > 2 W in the 915-928 nm region. Following an additional doubling stage, spectroscopy of the S-1(0) -> P-1(1) cadmium transition at 228.87 nm is performed on an atomic beam, with all the transitions from all eight natural isotopes observed in a single continuous sweep of more than 4 GHz in the deep ultraviolet. The absolute value of the transition frequency of Cd-114 and the isotope shifts relative to this transition are determined, with values for some of these shifts provided for the first time. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Watt-level blue light for precision spectroscopy, laser cooling and trapping of strontium and cadmium atoms

Poli Nicola
2021

Abstract

High-power and narrow-linewidth laser light is a vital tool for atomic physics, being used for example in laser cooling and trapping and precision spectroscopy. Here we produce Watt-level laser radiation at 457.75 nm and 460.86 nm of respective relevance for the cooling transitions of cadmium and strontium atoms. This is achieved via the frequency doubling of a kHz-linewidth vertical-external-cavity surface-emitting laser (VECSEL), which is based on a novel gain chip design enabling lasing at > 2 W in the 915-928 nm region. Following an additional doubling stage, spectroscopy of the S-1(0) -> P-1(1) cadmium transition at 228.87 nm is performed on an atomic beam, with all the transitions from all eight natural isotopes observed in a single continuous sweep of more than 4 GHz in the deep ultraviolet. The absolute value of the transition frequency of Cd-114 and the isotope shifts relative to this transition are determined, with values for some of these shifts provided for the first time. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
2021
Istituto Nazionale di Ottica - INO
CONTINUOUS-WAVE; ISOTOPE SHIFT; FREQUENCY; LINE; GENERATION; NM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/416433
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact