We present a method to detect the presence and depth of dark solitons within repulsive one-dimensional harmonically trapped Bose-Einstein condensates. For a system with one soliton, we provide numerical evidence that the shift of the density in Fourier space directly maps onto the depth of the soliton. For multi-soliton systems, combining our spectral method with established imaging techniques, the character of the solitons present in the condensate can be determined. We verify that the detection of solitons by the spectral shift works in the presence of waves induced by density engineering methods. Finally we discuss implications for vortex detection in three-dimensional Bose-Einstein condensates.

Characterising arbitrary dark solitons in trapped one-dimensional Bose-Einstein condensates

Galantucci L;
2021

Abstract

We present a method to detect the presence and depth of dark solitons within repulsive one-dimensional harmonically trapped Bose-Einstein condensates. For a system with one soliton, we provide numerical evidence that the shift of the density in Fourier space directly maps onto the depth of the soliton. For multi-soliton systems, combining our spectral method with established imaging techniques, the character of the solitons present in the condensate can be determined. We verify that the detection of solitons by the spectral shift works in the presence of waves induced by density engineering methods. Finally we discuss implications for vortex detection in three-dimensional Bose-Einstein condensates.
2021
bec
solitons
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/416488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact