We introduce a classical-quantum hybrid approach to computation, allowing for a quadratic performance improvement in the decision process of a learning agent. Using the paradigm of quantum accelerators, we introduce a routine that runs on a quantum computer, which allows for the encoding of probability distributions. This quantum routine is then employed, in a reinforcement learning set-up, to encode the distributions that drive action choices. Our routine is well-suited in the case of a large, although finite, number of actions and can be employed in any scenario where a probability distribution with a large support is needed. We describe the routine and assess its performance in terms of computational complexity, needed quantum resource, and accuracy. Finally, we design an algorithm showing how to exploit it in the context of Q-learning.
A hybrid classical-quantum approach to speed-up Q-learning
Giordano A;Mastroianni C;
2023
Abstract
We introduce a classical-quantum hybrid approach to computation, allowing for a quadratic performance improvement in the decision process of a learning agent. Using the paradigm of quantum accelerators, we introduce a routine that runs on a quantum computer, which allows for the encoding of probability distributions. This quantum routine is then employed, in a reinforcement learning set-up, to encode the distributions that drive action choices. Our routine is well-suited in the case of a large, although finite, number of actions and can be employed in any scenario where a probability distribution with a large support is needed. We describe the routine and assess its performance in terms of computational complexity, needed quantum resource, and accuracy. Finally, we design an algorithm showing how to exploit it in the context of Q-learning.File | Dimensione | Formato | |
---|---|---|---|
s41598-023-30990-5.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Dominio pubblico
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.