In this study, we theoretically investigate the response of a germanium thin film under femtosecond pulsed laser irradiation. Electron and lattice temperatures, as well as material-specific optical properties such as dielectric function and reflectivity, were calculated during the irradiation using an extended two-temperature model coupled with the carrier density rate equation and the Drude model. Melting and ablation fluence thresholds were also predicted, resulting in 0.14 J cm-2 and 0.35 J cm-2, respectively. An ultrafast change in both optical and thermal properties was detected upon laser irradiation. Results also indicate that thermal melting occurs after germanium takes on a metallic character during irradiation, and that the impact ionization process may have a critical role in the laser-induced thermal effect. Therefore, we suggest that the origin of the thermal modification of germanium surface under femtosecond laser irradiation is mostly due the impact ionization process and that its effect becomes more important when increasing the laser fluence.

Optical and Thermal Behavior of Germanium Thin Films under Femtosecond Laser Irradiation

Marco Girolami;
2022

Abstract

In this study, we theoretically investigate the response of a germanium thin film under femtosecond pulsed laser irradiation. Electron and lattice temperatures, as well as material-specific optical properties such as dielectric function and reflectivity, were calculated during the irradiation using an extended two-temperature model coupled with the carrier density rate equation and the Drude model. Melting and ablation fluence thresholds were also predicted, resulting in 0.14 J cm-2 and 0.35 J cm-2, respectively. An ultrafast change in both optical and thermal properties was detected upon laser irradiation. Results also indicate that thermal melting occurs after germanium takes on a metallic character during irradiation, and that the impact ionization process may have a critical role in the laser-induced thermal effect. Therefore, we suggest that the origin of the thermal modification of germanium surface under femtosecond laser irradiation is mostly due the impact ionization process and that its effect becomes more important when increasing the laser fluence.
2022
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Femtosecond laser
Germanium thin films
Two-temperature model
Impact ionization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/416774
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact