In the past few years, corrosion protection of metal materials has become a global challenge, due to its great economic importance. For this reason, various methods have been developed to inhibit the corrosion process, such as surface treatment approaches, by employing corrosion inhibitors through the deposition of opportunely designed functional coatings, employed to preserve from corrosion damages metallic substrates. Recently, among these techniques and in order to avoid the toxic chromate-based pre-treatment coatings, silane-based coatings and films loaded with organic and inorganic corrosion inhibitors have been widely used in corrosion mitigation water-based surface treatment. In this study, the synthetic approach was devoted to create an embedded, hosted, waterborne, and eco-friendly matrix, obtained by use of the sol-gel technique, through the reaction of functional alkoxysilane cross-linking precursors, namely (3-glycidyloxypropyl)trimethoxysilane (GPTMS) and (3-aminopropyl)triethoxysilane (APTES), in the presence of graphene oxide (GO) intercalated with natural and non-toxic phytic acid (PA) molecules. As a matter of fact, all experimental results from FT-IR spectroscopy, UV-Vis analysis, and SEM confirmed that PA molecules were successfully decorated on GO. Furthermore, polarization measurements and a neutral salt spray test were used to evaluate the anticorrosive performance on aluminum and steel substrates, thus showing that the GO-PA nanofiller improved the barrier and corrosion protection properties of the developed functional silane-based coatings.

Waterborne Eco-Sustainable Sol-Gel Coatings Based on Phytic Acid Intercalated Graphene Oxide for Corrosion Protection of Metallic Surfaces

Sfameni S;Plutino MR
2022

Abstract

In the past few years, corrosion protection of metal materials has become a global challenge, due to its great economic importance. For this reason, various methods have been developed to inhibit the corrosion process, such as surface treatment approaches, by employing corrosion inhibitors through the deposition of opportunely designed functional coatings, employed to preserve from corrosion damages metallic substrates. Recently, among these techniques and in order to avoid the toxic chromate-based pre-treatment coatings, silane-based coatings and films loaded with organic and inorganic corrosion inhibitors have been widely used in corrosion mitigation water-based surface treatment. In this study, the synthetic approach was devoted to create an embedded, hosted, waterborne, and eco-friendly matrix, obtained by use of the sol-gel technique, through the reaction of functional alkoxysilane cross-linking precursors, namely (3-glycidyloxypropyl)trimethoxysilane (GPTMS) and (3-aminopropyl)triethoxysilane (APTES), in the presence of graphene oxide (GO) intercalated with natural and non-toxic phytic acid (PA) molecules. As a matter of fact, all experimental results from FT-IR spectroscopy, UV-Vis analysis, and SEM confirmed that PA molecules were successfully decorated on GO. Furthermore, polarization measurements and a neutral salt spray test were used to evaluate the anticorrosive performance on aluminum and steel substrates, thus showing that the GO-PA nanofiller improved the barrier and corrosion protection properties of the developed functional silane-based coatings.
2022
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
sol-gel
phytic acid
(3-glycidyloxypropyl)trimethoxysilane
graphene oxide
eco-friendly coatings
nanohybrid anticorrosive coatings
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/416777
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact