In the field of stimuli-responsive materials, introducing a pH-sensitive dyestuff onto textile fabrics is a promising approach for the development of wearable sensors. In this paper, the alizarin red S dyestuff bonded with a sol-gel precursor, namely trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane, was used to functionalize polyethylene terephthalate fabrics, a semi-crystalline thermoplastic polyester largely used in the healthcare sector mainly due to its advantages, including mechanical strength, biocompatibility and resistance against abrasion and chemicals. The obtained hybrid halochromic silane-based coating on polyester fabrics was investigated with several chemical characterization techniques. Fourier transform infrared spectroscopy and X-ray Photoelectron Spectroscopy confirmed the immobilization of the dyestuff-based silane matrix onto polyethylene terephthalate samples through self-condensation of hydrolyzed silanols under the curing process. The reversibility and repeatability of pH-sensing properties of treated polyester fabrics in the pH range 2.0-8.0 were confirmed with diffuse reflectance and CIELAB color space characterizations. Polyester fabric functionalized with halochromic silane-based coating shows the durability of halochromic properties conversely to fabric treated with plain alizarin red S, thus highlighting the potentiality of the sol-gel approach in developing durable halochromic coating on synthetic substrates. The developed wearable pH-meter device could find applications as a non-invasive pH sensor for wellness and healthcare fields.

Sol-Gel Assisted Immobilization of Alizarin Red S on Polyester Fabrics for Developing Stimuli-Responsive Wearable Sensors

Mezzi A;Brucale M;Plutino MR
2022

Abstract

In the field of stimuli-responsive materials, introducing a pH-sensitive dyestuff onto textile fabrics is a promising approach for the development of wearable sensors. In this paper, the alizarin red S dyestuff bonded with a sol-gel precursor, namely trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane, was used to functionalize polyethylene terephthalate fabrics, a semi-crystalline thermoplastic polyester largely used in the healthcare sector mainly due to its advantages, including mechanical strength, biocompatibility and resistance against abrasion and chemicals. The obtained hybrid halochromic silane-based coating on polyester fabrics was investigated with several chemical characterization techniques. Fourier transform infrared spectroscopy and X-ray Photoelectron Spectroscopy confirmed the immobilization of the dyestuff-based silane matrix onto polyethylene terephthalate samples through self-condensation of hydrolyzed silanols under the curing process. The reversibility and repeatability of pH-sensing properties of treated polyester fabrics in the pH range 2.0-8.0 were confirmed with diffuse reflectance and CIELAB color space characterizations. Polyester fabric functionalized with halochromic silane-based coating shows the durability of halochromic properties conversely to fabric treated with plain alizarin red S, thus highlighting the potentiality of the sol-gel approach in developing durable halochromic coating on synthetic substrates. The developed wearable pH-meter device could find applications as a non-invasive pH sensor for wellness and healthcare fields.
2022
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
wearable pH-meter
smart textile
sol-gel
alizarin red S
organic-inorganic material
polyester fabric
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/416787
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact