Background. Choline kinase alpha (CHKA), an essential gene in phospholipid metabolism, is among the modulated MALAT1-targeted transcripts in advanced and metastatic prostate cancer (PCa). Methods. We analyzed CHKA mRNA by qPCR upon MALAT1 targeting in PCa cells, which is characterized by high dose-responsiveness to the androgen receptor (AR) and its variants. Metabolome analysis of MALAT1-depleted cells was performed by quantitative High-resolution 1 H-Nuclear Magnetic Resonance (NMR) spectroscopy. In addition, CHKA genomic regions were evaluated by chromatin immunoprecipitation (ChIP) in order to assess MALAT1-dependent histone-tail modifications and AR recruitment. Results. In MALAT1-depleted cells, the decrease of CHKA gene expression was associated with reduced total choline-containing metabolites compared to controls, particularly phosphocholine (PCho). Upon MALAT1 targeting a significant increase in repressive histone modifications was observed at the CHKA intron-2, encompassing relevant AR binding sites. Combining of MALAT1 targeting with androgen treatment prevented MALAT1-dependent CHKA silencing in androgen-responsive (LNCaP) cells, while it did not in hormone-refractory cells (22RV1 cells). Moreover, AR nuclear translocation and its activation were detected by confocal microscopy analysis and ChIP upon MALAT1 targeting or androgen treatment. Conclusions. These findings support the role of MALAT1 as a CHKA activator through putative association with the liganded or unliganded AR, unveiling its targeting as a therapeutic option from a metabolic rewiring perspective.

MALAT1 as a Regulator of the Androgen-Dependent Choline Kinase A Gene in the Metabolic Rewiring of Prostate Cancer

Cencioni C;Aiello A;Spallotta F;Farsetti A
2022

Abstract

Background. Choline kinase alpha (CHKA), an essential gene in phospholipid metabolism, is among the modulated MALAT1-targeted transcripts in advanced and metastatic prostate cancer (PCa). Methods. We analyzed CHKA mRNA by qPCR upon MALAT1 targeting in PCa cells, which is characterized by high dose-responsiveness to the androgen receptor (AR) and its variants. Metabolome analysis of MALAT1-depleted cells was performed by quantitative High-resolution 1 H-Nuclear Magnetic Resonance (NMR) spectroscopy. In addition, CHKA genomic regions were evaluated by chromatin immunoprecipitation (ChIP) in order to assess MALAT1-dependent histone-tail modifications and AR recruitment. Results. In MALAT1-depleted cells, the decrease of CHKA gene expression was associated with reduced total choline-containing metabolites compared to controls, particularly phosphocholine (PCho). Upon MALAT1 targeting a significant increase in repressive histone modifications was observed at the CHKA intron-2, encompassing relevant AR binding sites. Combining of MALAT1 targeting with androgen treatment prevented MALAT1-dependent CHKA silencing in androgen-responsive (LNCaP) cells, while it did not in hormone-refractory cells (22RV1 cells). Moreover, AR nuclear translocation and its activation were detected by confocal microscopy analysis and ChIP upon MALAT1 targeting or androgen treatment. Conclusions. These findings support the role of MALAT1 as a CHKA activator through putative association with the liganded or unliganded AR, unveiling its targeting as a therapeutic option from a metabolic rewiring perspective.
2022
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
MALAT1; choline kinase A; metabolic rewiring; phospholipid metabolism; prostate cancer.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/416989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact