A three-step electrochemical process is developed to grow a coating on Ti6Al4V alloy for biomedical applications aimed to enhance its bioactivity. The coating is composed by a porous titanium oxide filled with Ag, alginic acid, and hydroxyapatite to provide antibacterial properties and, at the same time, osteointegration capability. Anodized and treated with the electrochemical process samples are characterized by Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction, and Raman Spectroscopy to have information about morphology and composition soon after the fabrication and after immersion in Hanks' solution. Bioactivity of the samples is also proved by electrochemical tests through Electrochemical Impedance Spectroscopy (EIS) measurements. Antibacterial properties, cytocompatibility and hemocompatibility of the samples are successfully demonstrated by in vitro tests.
Enhancing Biocompatibility and Antibacterial Activity of Ti6Al4V by Entrapping Ag and Hydroxyapatite Inside Alginate Filled Pores of TiO2 Layer Grown by Spark Anodizing
Pasquale Picone;Domenico Nuzzo;
2023
Abstract
A three-step electrochemical process is developed to grow a coating on Ti6Al4V alloy for biomedical applications aimed to enhance its bioactivity. The coating is composed by a porous titanium oxide filled with Ag, alginic acid, and hydroxyapatite to provide antibacterial properties and, at the same time, osteointegration capability. Anodized and treated with the electrochemical process samples are characterized by Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction, and Raman Spectroscopy to have information about morphology and composition soon after the fabrication and after immersion in Hanks' solution. Bioactivity of the samples is also proved by electrochemical tests through Electrochemical Impedance Spectroscopy (EIS) measurements. Antibacterial properties, cytocompatibility and hemocompatibility of the samples are successfully demonstrated by in vitro tests.File | Dimensione | Formato | |
---|---|---|---|
prod_474988-doc_193972.pdf
solo utenti autorizzati
Descrizione: Enhancing Biocompatibility and Antibacterial Activity of Ti6Al4V
Tipologia:
Versione Editoriale (PDF)
Dimensione
3.12 MB
Formato
Adobe PDF
|
3.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
prod_474988-doc_204544.pdf
accesso aperto
Descrizione: Enhancing Biocompatibility and Antibacterial Activity
Tipologia:
Versione Editoriale (PDF)
Dimensione
3.1 MB
Formato
Adobe PDF
|
3.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.