Data from a variety of research programmes are increasingly used by policy makers, researchers, and private sectors to make data-driven decisions related to climate change and variability. Climate services are emerging as the link to narrow the gap between climate science and downstream users. The Global Framework for Climate Services (GFCS) of the World Meteorological Organization (WMO) offers an umbrella for the development of climate services and has identified the quality assessment, along with its use in user guidance, as a key aspect of the service provision. This offers an extra stimulus for discussing what type of quality information to focus on and how to present it to downstream users. Quality has become an important keyword for those working on data in both the private and public sectors and significant resources are now devoted to quality management of processes and products. Quality management guarantees reliability and usability of the product served, it is a key element to build trust between consumers and suppliers. Untrustworthy data could lead to a negative economic impact at best and a safety hazard at worst. In a progressive commitment to establish this relation of trust, as well as providing sufficient guidance for users, the Copernicus Climate Change Service (C3S) has made significant investments in the development of an Evaluation and Quality Control (EQC) function. This function offers a homogeneous user-driven service for the quality of the C3S Climate Data Store (CDS). Here we focus on the EQC component targeting the assessment of the CDS datasets, which include satellite and in-situ observations, reanalysis, climate projections, and seasonal forecasts. The EQC function is characterised by a two-tier review system designed to guarantee the quality of the dataset information. While the need of assessing the quality of climate data is well recognised, the methodologies, the metrics, the evaluation framework, and how to present all this information to the users have never been developed before in an operational service, encompassing all the main climate dataset categories. Building the underlying technical solutions poses unprecedented challenges and makes the C3S EQC approach unique. This paper describes the development and the implementation of the operational EQC function providing an overarching quality management service for the whole CDS data.

Quality Management Framework for Climate Datasets

Putero D;Serva F;Cavaliere D;Cristofanelli P;Madonna F;Rosoldi M;
2022

Abstract

Data from a variety of research programmes are increasingly used by policy makers, researchers, and private sectors to make data-driven decisions related to climate change and variability. Climate services are emerging as the link to narrow the gap between climate science and downstream users. The Global Framework for Climate Services (GFCS) of the World Meteorological Organization (WMO) offers an umbrella for the development of climate services and has identified the quality assessment, along with its use in user guidance, as a key aspect of the service provision. This offers an extra stimulus for discussing what type of quality information to focus on and how to present it to downstream users. Quality has become an important keyword for those working on data in both the private and public sectors and significant resources are now devoted to quality management of processes and products. Quality management guarantees reliability and usability of the product served, it is a key element to build trust between consumers and suppliers. Untrustworthy data could lead to a negative economic impact at best and a safety hazard at worst. In a progressive commitment to establish this relation of trust, as well as providing sufficient guidance for users, the Copernicus Climate Change Service (C3S) has made significant investments in the development of an Evaluation and Quality Control (EQC) function. This function offers a homogeneous user-driven service for the quality of the C3S Climate Data Store (CDS). Here we focus on the EQC component targeting the assessment of the CDS datasets, which include satellite and in-situ observations, reanalysis, climate projections, and seasonal forecasts. The EQC function is characterised by a two-tier review system designed to guarantee the quality of the dataset information. While the need of assessing the quality of climate data is well recognised, the methodologies, the metrics, the evaluation framework, and how to present all this information to the users have never been developed before in an operational service, encompassing all the main climate dataset categories. Building the underlying technical solutions poses unprecedented challenges and makes the C3S EQC approach unique. This paper describes the development and the implementation of the operational EQC function providing an overarching quality management service for the whole CDS data.
2022
Istituto di Metodologie per l'Analisi Ambientale - IMAA
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Istituto di Scienze Marine - ISMAR
climate services
data quality
FAIR
scalability
trust
File in questo prodotto:
File Dimensione Formato  
prod_471054-doc_191205.pdf

accesso aperto

Descrizione: Quality Management Framework for Climate Datasets
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/417437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact