We present the characterization of a novel balanced homodyne detector operating in the mid-infrared. The challenging task of revealing non-classicality in mid-infrared light, e. g. in quantum cascade lasers emission, requires a high-performance detection system. Through the intensity noise power spectral density analysis of the differential signal coming from the incident radiation, we show that our setup is shot-noise limited. We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Mid-infrared homodyne balanced detector for quantum light characterization
Cappelli Francesco;Bruno Natalia;Corrias Nicola;BorriSimone;De Natale Paolo;Zavatta Alessandro
2021
Abstract
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared. The challenging task of revealing non-classicality in mid-infrared light, e. g. in quantum cascade lasers emission, requires a high-performance detection system. Through the intensity noise power spectral density analysis of the differential signal coming from the incident radiation, we show that our setup is shot-noise limited. We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing AgreementFile | Dimensione | Formato | |
---|---|---|---|
prod_471112-doc_191246.pdf
accesso aperto
Descrizione: Mid-infrared homodyne balanced detector for quantum light characterization
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.51 MB
Formato
Adobe PDF
|
2.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.