The incorporation of bioactive molecules into a water-soluble [99mTc][Tc(N)(PNP)]-based mixed compound is described. The method, which exploits the chemical properties of the new [99mTc][Tc(N)(PNP3OH)]2+synthon [PNP3OH = N,N-bis(di-hydroxymethylenphosphinoethyl)methoxyethylamine], was successfully applied to the labeling of small, medium (cysteine-functionalized biotin and c-RGDfK pentapeptide), and large molecules. Apomyoglobin was chosen as a model protein and derivatized via site-specific enzymatic reaction catalyzed by transglutaminase (TGase) with the H-Cys-Gly-Lys-Gly-OH tetrapeptide for the insertion in the protein sequence of a reactive N-terminal Cys for 99mTc chelation. Radiosyntheses were performed under physiological conditions at room temperature within 30 min. They were reproducible, highly specific, and quantitative. Heteroleptic complexes are hydrophilic and stable. Biodistributions of the selected compounds show favorable pharmacokinetics within 60 min post-injection and predominant elimination through the renal-urinary pathway. In a wider perspective, these data suggest a role of the [99mTc][Tc(N)(PNP)] technology in the labeling of temperature-sensitive biomolecules, especially targeting proteins for SPECT imaging.

Water-Soluble [Tc(N)(PNP)] Moiety for Room-Temperature 99mTc Labeling of Sensitive Target Vectors

Bolzati C;Salvarese N;Vittadini A;Forrer D;Brunello S;
2022

Abstract

The incorporation of bioactive molecules into a water-soluble [99mTc][Tc(N)(PNP)]-based mixed compound is described. The method, which exploits the chemical properties of the new [99mTc][Tc(N)(PNP3OH)]2+synthon [PNP3OH = N,N-bis(di-hydroxymethylenphosphinoethyl)methoxyethylamine], was successfully applied to the labeling of small, medium (cysteine-functionalized biotin and c-RGDfK pentapeptide), and large molecules. Apomyoglobin was chosen as a model protein and derivatized via site-specific enzymatic reaction catalyzed by transglutaminase (TGase) with the H-Cys-Gly-Lys-Gly-OH tetrapeptide for the insertion in the protein sequence of a reactive N-terminal Cys for 99mTc chelation. Radiosyntheses were performed under physiological conditions at room temperature within 30 min. They were reproducible, highly specific, and quantitative. Heteroleptic complexes are hydrophilic and stable. Biodistributions of the selected compounds show favorable pharmacokinetics within 60 min post-injection and predominant elimination through the renal-urinary pathway. In a wider perspective, these data suggest a role of the [99mTc][Tc(N)(PNP)] technology in the labeling of temperature-sensitive biomolecules, especially targeting proteins for SPECT imaging.
2022
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
technetium-99m
water-soluble
phosphine
transglutaminase
RGD
File in questo prodotto:
File Dimensione Formato  
prod_471391-doc_191432.pdf

solo utenti autorizzati

Descrizione: Water-Soluble [Tc(N)(PNP)] Moiety for Room-Temperature Tc-99m Labeling of Sensitive Target Vectors
Tipologia: Versione Editoriale (PDF)
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/417567
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact