This work represents a first attempt to include the complex variety of electron-molecule processes in a full kinetic particle-in-cell/test particle Monte Carlo model for the plasma and neutral gas phase in a Hall thruster. Particular emphasis has been placed on Earth's atmosphere species for the air-breathing concept. The coupling between the plasma and the gas phase is self-consistently captured by assuming the cold gas approximation and considering gas-wall and gas recycling from the walls due to ion neutralization. The results showed that, with air molecular propellants, all the most relevant thruster performance figures degraded relative to the nominal case using Xe propellant. The main reasons can be ascribed to a reduced ionization cross-section, a larger gas ionization mean free path due to lighter mass air species, and additional electron collisional power losses. While vibrational excitations power losses are negligible, dissociation and electronic excitations compete with the ionization channel. In addition, for molecular oxygen, the large dissociation leads to even faster atoms, further reducing their transit time inside the discharge channel. Future studies are needed to investigate the role of non-equilibrium vibrational kinetics and metastable states for stepwise ionization.

Coupling plasma physics and chemistry in the PIC model of electric propulsion: Application to an air-breathing, low-power Hall thruster

Taccogna F
Primo
Writing – Review & Editing
;
Cichocki F;Minelli P
2022

Abstract

This work represents a first attempt to include the complex variety of electron-molecule processes in a full kinetic particle-in-cell/test particle Monte Carlo model for the plasma and neutral gas phase in a Hall thruster. Particular emphasis has been placed on Earth's atmosphere species for the air-breathing concept. The coupling between the plasma and the gas phase is self-consistently captured by assuming the cold gas approximation and considering gas-wall and gas recycling from the walls due to ion neutralization. The results showed that, with air molecular propellants, all the most relevant thruster performance figures degraded relative to the nominal case using Xe propellant. The main reasons can be ascribed to a reduced ionization cross-section, a larger gas ionization mean free path due to lighter mass air species, and additional electron collisional power losses. While vibrational excitations power losses are negligible, dissociation and electronic excitations compete with the ionization channel. In addition, for molecular oxygen, the large dissociation leads to even faster atoms, further reducing their transit time inside the discharge channel. Future studies are needed to investigate the role of non-equilibrium vibrational kinetics and metastable states for stepwise ionization.
2022
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
kinetic particle-in-cell modeling
test particle Monte Carlo gas dynamics
low power Hall thruster
air-breathing electric propulsion
molecular propellant
File in questo prodotto:
File Dimensione Formato  
prod_473483-doc_192939.pdf

accesso aperto

Descrizione: Coupling plasma physics and chemistry in the PIC model of electric propulsion: Application to an air-breathing, low-power Hall thruster
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.23 MB
Formato Adobe PDF
4.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/417606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact