Autonomous vehicles (AVs) generate a massive amount of multi-modal data that once collected and processed through Machine Learning algorithms, enable AI-based services at the Edge. In fact, only a subset of the collected data present infor- mative attributes to be exploited at the Edge. Therefore, extracting such a subset is of utmost importance to limit computation and com- munication workloads. Doing that in a distributed manner imposes the AVs to cooperate in finding an agreement on which attributes should be sent to the Edge. In this work, we address such a problem by proposing a federated feature selection (FFS) algorithm where the AVs collaborate to filter out, iteratively, the less relevant at- tributes in a distributed manner, without any exchange of raw data, thought two different components: a Mutual-Information-based feature selection algorithm run by the AVs and a novel aggregation function based on the Bayes theorem executed on the Edge. The FFS algorithm has been tested on two reference datasets: MAV with images and inertial measurements of a monitored vehicle, WESAD with a collection of samples from biophysical sensors to monitor a relative passenger. The numerical results show that the AVs converge to a minimum achievable subset of features with both the datasets, i.e., 24 out of 2166 (99%) in MAV and 4 out of 8 (50%) in WESAD, respectively, preserving the informative content of data.

Federated feature selection for cyber-physical systems of systems

Gotta A;Valerio L
2022

Abstract

Autonomous vehicles (AVs) generate a massive amount of multi-modal data that once collected and processed through Machine Learning algorithms, enable AI-based services at the Edge. In fact, only a subset of the collected data present infor- mative attributes to be exploited at the Edge. Therefore, extracting such a subset is of utmost importance to limit computation and com- munication workloads. Doing that in a distributed manner imposes the AVs to cooperate in finding an agreement on which attributes should be sent to the Edge. In this work, we address such a problem by proposing a federated feature selection (FFS) algorithm where the AVs collaborate to filter out, iteratively, the less relevant at- tributes in a distributed manner, without any exchange of raw data, thought two different components: a Mutual-Information-based feature selection algorithm run by the AVs and a novel aggregation function based on the Bayes theorem executed on the Edge. The FFS algorithm has been tested on two reference datasets: MAV with images and inertial measurements of a monitored vehicle, WESAD with a collection of samples from biophysical sensors to monitor a relative passenger. The numerical results show that the AVs converge to a minimum achievable subset of features with both the datasets, i.e., 24 out of 2166 (99%) in MAV and 4 out of 8 (50%) in WESAD, respectively, preserving the informative content of data.
2022
Istituto di informatica e telematica - IIT
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Federated learning
Feature selection
Distributed learning
Mutual information
File in questo prodotto:
File Dimensione Formato  
prod_471809-doc_191887.pdf

accesso aperto

Descrizione: Postprint - Federated feature selection for cyber-physical systems of systems
Tipologia: Versione Editoriale (PDF)
Dimensione 628.97 kB
Formato Adobe PDF
628.97 kB Adobe PDF Visualizza/Apri
prod_471809-doc_192353.pdf

accesso aperto

Descrizione: Federated feature selection for cyber-physical systems of systems
Tipologia: Versione Editoriale (PDF)
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/417666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact