Multi-Access Edge Computing (MEC) is attracting a lot of interest because it complements cloud-based approaches. Indeed, MEC is opening up in the direction of reducing both interaction delays and data sharing, called Cyber-Physical Systems (CPSs). In the near fu-ture, edge technologies will be a fundamental tool to better support time-dependent and data-intensive applications. In this context, this work explores existing and emerging platforms for MEC and human-centric applications, and proposes a suitable architecture that can be used in the context of autonomous vehicle systems.The proposed architecture will support scalable communication among sensing devices and edge/cloud computing platforms, as well as orchestrate services for computing, storage, and learning with the use of an Information-centric paradigm such as Apache Kafka
A novel approach to distributed model aggregation using Apache Kafka
Bano S.;Carlini E.;Cassara' P.;Coppola M.;Dazzi P.;Gotta A.
2022
Abstract
Multi-Access Edge Computing (MEC) is attracting a lot of interest because it complements cloud-based approaches. Indeed, MEC is opening up in the direction of reducing both interaction delays and data sharing, called Cyber-Physical Systems (CPSs). In the near fu-ture, edge technologies will be a fundamental tool to better support time-dependent and data-intensive applications. In this context, this work explores existing and emerging platforms for MEC and human-centric applications, and proposes a suitable architecture that can be used in the context of autonomous vehicle systems.The proposed architecture will support scalable communication among sensing devices and edge/cloud computing platforms, as well as orchestrate services for computing, storage, and learning with the use of an Information-centric paradigm such as Apache KafkaFile | Dimensione | Formato | |
---|---|---|---|
prod_471811-doc_192045.pdf
non disponibili
Descrizione: A novel approach to distributed model aggregation using Apache Kafka
Tipologia:
Versione Editoriale (PDF)
Dimensione
884.46 kB
Formato
Adobe PDF
|
884.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.