Methods The independent cohort was composed of 10'596 patients from the university hospital ICU of Amsterdam (the "AmsterdamUMC database") admitted to their intensive care units. In this cohort, we analysed the accuracy of algorithms based on logistic regression and deep learning methods. The accuracy of investigated algorithms had previously been tested with electronic intensive care unit (eICU) and MIMIC-III patients.
External validation of a deep-learning model to predict severe acute kidney injury based on urine output changes in critically ill patients
Tripepi, Giovanni;Politi, Cristina;
2022
Abstract
Methods The independent cohort was composed of 10'596 patients from the university hospital ICU of Amsterdam (the "AmsterdamUMC database") admitted to their intensive care units. In this cohort, we analysed the accuracy of algorithms based on logistic regression and deep learning methods. The accuracy of investigated algorithms had previously been tested with electronic intensive care unit (eICU) and MIMIC-III patients.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
s40620-022-01335-8.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.88 MB
Formato
Adobe PDF
|
1.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


