Improving air quality is an important environmental challenge of our time. Chile currently has one of the most stable and emerging economies in Latin America, where human impact on natural resources and air quality does not go unperceived. Santiago, the capital of Chile, is one of the cities in which particulate matter (PM) levels exceed national and international limits. Its location and climate cause critical conditions for human health when interaction with anthropogenic emissions is present. In this paper, we propose a predictive model based on bivariate regression to estimate PM levels, related to PM2.5 and PM10, simultaneously. Birnbaum-Saunders distributions are used in the joint modeling of real-world PM2.5 and PM10 data by considering as covariates some relevant meteorological variables employed in similar studies. The Mahalanobis distance is utilized to assess bivariate outliers and to detect suitability of the distributional assumption. In addition, we use the local influence technique for analyzing the impact of a perturbation on the overall estimation of model parameters. In the predictions, we check the categorization for the observed and predicted cases of the model according to the primary air quality regulations for PM.
Predicting PM2.5 and PM10 levels during critical episodes management in Santiago, Chile, with a bivariate Birnbaum-Saunders log-linear model
F Ruggeri
2021
Abstract
Improving air quality is an important environmental challenge of our time. Chile currently has one of the most stable and emerging economies in Latin America, where human impact on natural resources and air quality does not go unperceived. Santiago, the capital of Chile, is one of the cities in which particulate matter (PM) levels exceed national and international limits. Its location and climate cause critical conditions for human health when interaction with anthropogenic emissions is present. In this paper, we propose a predictive model based on bivariate regression to estimate PM levels, related to PM2.5 and PM10, simultaneously. Birnbaum-Saunders distributions are used in the joint modeling of real-world PM2.5 and PM10 data by considering as covariates some relevant meteorological variables employed in similar studies. The Mahalanobis distance is utilized to assess bivariate outliers and to detect suitability of the distributional assumption. In addition, we use the local influence technique for analyzing the impact of a perturbation on the overall estimation of model parameters. In the predictions, we check the categorization for the observed and predicted cases of the model according to the primary air quality regulations for PM.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.