This paper focuses on robustness analysis of non-exchangeable product partition models (PPM), which are widely used to detect multiple change points. Bayesian robustness is usually concerned with the impact of perturbations in prior distributions on posterior inferences. Our contribution is twofold since we consider multiplicative perturbations in the data distribution, as well as in the prior distribution of its parameters. As a novelty in the robust Bayesian and PPM literature, we introduce some sensitivity measures to examine how such perturbations affect the posterior inference on the number of clusters and their location, as well as the product estimates. We focus our analysis on the skew-normal class of distributions, thus building a PPM under skew-normality. We apply the proposed PPM to analyze a Brazilian tomato price data set.

Bayesian robustness in change point analysis

F Ruggeri
2022

Abstract

This paper focuses on robustness analysis of non-exchangeable product partition models (PPM), which are widely used to detect multiple change points. Bayesian robustness is usually concerned with the impact of perturbations in prior distributions on posterior inferences. Our contribution is twofold since we consider multiplicative perturbations in the data distribution, as well as in the prior distribution of its parameters. As a novelty in the robust Bayesian and PPM literature, we introduce some sensitivity measures to examine how such perturbations affect the posterior inference on the number of clusters and their location, as well as the product estimates. We focus our analysis on the skew-normal class of distributions, thus building a PPM under skew-normality. We apply the proposed PPM to analyze a Brazilian tomato price data set.
2022
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Change point
Random partition
Sensitivity
Skew-normal distributions
File in questo prodotto:
File Dimensione Formato  
prod_477385-doc_195355.pdf

solo utenti autorizzati

Descrizione: Bayesian robustness in change point analysis
Tipologia: Versione Editoriale (PDF)
Dimensione 929.78 kB
Formato Adobe PDF
929.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/417789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact