The biotransformation of the aromatic amino acids phenylalanine, tyrosine and tryptophan originates a number of bioactive compounds. Yeasts are the most used microorganisms for the transformation of (L)-phenylalanine into the flavour phenylethanol. Here, we reported a study on the biotransformation of the proteogenic aminoacids phenylalanine, tyrosine and tryptophan by yeast strains belonging to Yarrowia genus. We found that the latter microorganisms, in high aerobic conditions, metabolise the aromatic amino acids (L)-phenylalanine and (L)-tyrosine with the almost exclusive formation of phenylacetic acid and 4-hydroxyphenylacetic acid, respectively. Differently, the biotransformation of (L)-tryptophan with Y. lipolytica, gave anthranilic acid as the main product. As stated by the European and USA legislations concerning natural flavour production, phenylacetic acid obtained by microbial conversion of phenylalanine of natural origin can be commercialised as a natural flavour. Accordingly, our findings were exploited in a new process, based on the Yarrowia strains-mediated biotransformation of natural (L)-phenylalanine, that allows the large-scale preparation of the high-value, natural flavour, phenylacetic acid.
Biotransformation of the Proteogenic Amino Acids Phenylalanine, Tyrosine and Tryptophan by Yarrowia Species: An Application to the Preparative Synthesis of Natural Phenylacetic Acid
Serra S
Primo
;Castagna ASecondo
;Marzorati SPenultimo
;Valentino MUltimo
2022
Abstract
The biotransformation of the aromatic amino acids phenylalanine, tyrosine and tryptophan originates a number of bioactive compounds. Yeasts are the most used microorganisms for the transformation of (L)-phenylalanine into the flavour phenylethanol. Here, we reported a study on the biotransformation of the proteogenic aminoacids phenylalanine, tyrosine and tryptophan by yeast strains belonging to Yarrowia genus. We found that the latter microorganisms, in high aerobic conditions, metabolise the aromatic amino acids (L)-phenylalanine and (L)-tyrosine with the almost exclusive formation of phenylacetic acid and 4-hydroxyphenylacetic acid, respectively. Differently, the biotransformation of (L)-tryptophan with Y. lipolytica, gave anthranilic acid as the main product. As stated by the European and USA legislations concerning natural flavour production, phenylacetic acid obtained by microbial conversion of phenylalanine of natural origin can be commercialised as a natural flavour. Accordingly, our findings were exploited in a new process, based on the Yarrowia strains-mediated biotransformation of natural (L)-phenylalanine, that allows the large-scale preparation of the high-value, natural flavour, phenylacetic acid.File | Dimensione | Formato | |
---|---|---|---|
catalysts-12-01638.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
558.86 kB
Formato
Adobe PDF
|
558.86 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.