The superfluidity of low-temperature bosons is well established in the collisional regime. In the collisionless regime, however, the presence of superfluidity is not yet fully clarified, in particular in lower spatial dimensions. Here, we compare the Vlasov-Landau equation, which does not take into account the superfluid nature of the bosonic system, with the Andreev-Khalatnikov equations, which instead explicitly contain a superfluid velocity. We show that recent experimental data of the sound mode in a two-dimensional collisionless Bose gas of Rb-87 atoms are in good agreement with both theories, but the sound damping is better reproduced by the Andreev-Khalatnikov equations below the Berezinskii-Kosterlitz-Thouless critical temperature T-c, while above T-c the Vlasov-Landau results are closer to the experimental ones. For one-dimensional bosonic fluids, where experimental data are not yet available, we find larger differences between the sound velocities predicted by the two transport theories and, also in this case, the existence of a superfluid velocity reduces the sound damping.
Collisionless sound of bosonic superfluids in lower dimensions
Salasnich L;
2021
Abstract
The superfluidity of low-temperature bosons is well established in the collisional regime. In the collisionless regime, however, the presence of superfluidity is not yet fully clarified, in particular in lower spatial dimensions. Here, we compare the Vlasov-Landau equation, which does not take into account the superfluid nature of the bosonic system, with the Andreev-Khalatnikov equations, which instead explicitly contain a superfluid velocity. We show that recent experimental data of the sound mode in a two-dimensional collisionless Bose gas of Rb-87 atoms are in good agreement with both theories, but the sound damping is better reproduced by the Andreev-Khalatnikov equations below the Berezinskii-Kosterlitz-Thouless critical temperature T-c, while above T-c the Vlasov-Landau results are closer to the experimental ones. For one-dimensional bosonic fluids, where experimental data are not yet available, we find larger differences between the sound velocities predicted by the two transport theories and, also in this case, the existence of a superfluid velocity reduces the sound damping.File | Dimensione | Formato | |
---|---|---|---|
prod_477453-doc_195354.pdf
solo utenti autorizzati
Descrizione: Collisionless sound of bosonic superfluids in lower dimensions
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
610.98 kB
Formato
Adobe PDF
|
610.98 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.