In the last decade, Raman Spectroscopy (RS) was demonstrated to be a label-free, non-invasive and non-destructive optical spectroscopy allowing the improvement in diagnostic accuracy in cancer and analytical assessment for cell sensing. This review discusses how Raman spectra can lead to a deeper molecular understanding of the biochemical changes in cancer cells in comparison to non-cancer cells, analyzing two key examples, leukemia and breast cancer. The reported Raman results provide information on cancer progression and allow the identification, classification, and follow-up after chemotherapy treatments of the cancer cells from the liquid biopsy. The key obstacles for RS applications in cancer cell diagnosis, including quality, objectivity, number of cells and velocity of the analysis, are considered. The use of multivariant analysis, such as principal component analysis (PCA) and linear discriminate analysis (LDA), for an automatic and objective assessment without any specialized knowledge of spectroscopy is presented. Raman imaging for cancer cell mapping is shown and its advantages for routine clinical pathology practice and live cell imaging, compared to single-point spectral analysis, are debated. Additionally, the combination of RS with microfluidic devices and high-throughput screening for improving the velocity and the number of cells analyzed are also discussed. Finally, the combination of the Raman microscopy (RM) with other imaging modalities, for complete visualization and characterization of the cells, is described.

Raman Microscopy: Progress in Research on Cancer Cell Sensing

De Luca Anna Chiara
Ultimo
2020

Abstract

In the last decade, Raman Spectroscopy (RS) was demonstrated to be a label-free, non-invasive and non-destructive optical spectroscopy allowing the improvement in diagnostic accuracy in cancer and analytical assessment for cell sensing. This review discusses how Raman spectra can lead to a deeper molecular understanding of the biochemical changes in cancer cells in comparison to non-cancer cells, analyzing two key examples, leukemia and breast cancer. The reported Raman results provide information on cancer progression and allow the identification, classification, and follow-up after chemotherapy treatments of the cancer cells from the liquid biopsy. The key obstacles for RS applications in cancer cell diagnosis, including quality, objectivity, number of cells and velocity of the analysis, are considered. The use of multivariant analysis, such as principal component analysis (PCA) and linear discriminate analysis (LDA), for an automatic and objective assessment without any specialized knowledge of spectroscopy is presented. Raman imaging for cancer cell mapping is shown and its advantages for routine clinical pathology practice and live cell imaging, compared to single-point spectral analysis, are debated. Additionally, the combination of RS with microfluidic devices and high-throughput screening for improving the velocity and the number of cells analyzed are also discussed. Finally, the combination of the Raman microscopy (RM) with other imaging modalities, for complete visualization and characterization of the cells, is described.
2020
Istituto di Biochimica e Biologia Cellulare - IBBC
Raman spectroscopy
cell sensing
leukemia
breast cancer cell
Raman imaging
correlative imaging
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/418017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 41
social impact