Abstract Wildlife monitoring for open populations can be performed using a number of different survey methods. Each survey method gives rise to a type of data and, in the last five decades, a large number of associated statistical models have been developed for analyzing these data. Although these models have been parameterized and fitted using different approaches, they have all been designed to either model the pattern with which individuals enter and/or exit the population, or to estimate the population size by accounting for the corresponding observation process, or both. However, existing approaches rely on a predefined model structure and complexity, either by assuming that parameters linked to the entry and exit pattern (EEP) are specific to sampling occasions, or by employing parametric curves to describe the EEP. Instead, we propose a novel Bayesian nonparametric framework for modeling EEPs based on the Polya tree (PT) prior for densities. Our Bayesian nonparametric approach avoids overfitting when inferring EEPs, while simultaneously allowing more flexibility than is possible using parametric curves. Finally, we introduce the replicate PT prior for defining classes of models for these data allowing us to impose constraints on the EEPs, when required. We demonstrate our new approach using capture-recapture, count, and ring-recovery data for two different case?studies.

A general modeling framework for open wildlife populations based on the Polya tree prior

Tenan;Simone;
2022

Abstract

Abstract Wildlife monitoring for open populations can be performed using a number of different survey methods. Each survey method gives rise to a type of data and, in the last five decades, a large number of associated statistical models have been developed for analyzing these data. Although these models have been parameterized and fitted using different approaches, they have all been designed to either model the pattern with which individuals enter and/or exit the population, or to estimate the population size by accounting for the corresponding observation process, or both. However, existing approaches rely on a predefined model structure and complexity, either by assuming that parameters linked to the entry and exit pattern (EEP) are specific to sampling occasions, or by employing parametric curves to describe the EEP. Instead, we propose a novel Bayesian nonparametric framework for modeling EEPs based on the Polya tree (PT) prior for densities. Our Bayesian nonparametric approach avoids overfitting when inferring EEPs, while simultaneously allowing more flexibility than is possible using parametric curves. Finally, we introduce the replicate PT prior for defining classes of models for these data allowing us to impose constraints on the EEPs, when required. We demonstrate our new approach using capture-recapture, count, and ring-recovery data for two different case?studies.
2022
Istituto di Scienze Marine - ISMAR
Bayesian nonparametrics
capture-recapture
count data
Polya tree
ring recovery
statistical ecology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/418092
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact