A visible light - driven photocatalytic hydrogen production system was evaluated for methanol as a sacrificial agent using a Cu2O/TiO2 composite material. A simple ball - milling method was proposed to prepare the Cu2O/TiO2 photocatalyst, focusing on those factors influencing the photocatalytic system through a two-level 3-factorial design approach. The effect of the Cu2O loading and the operating conditions (milling time and rotation rate) for the preparation method were analysed. 1% wt. of Cu2O over TiO2 was identified as the best formulation for the composite catalyst, achieving a maximum hydrogen production of about 1 mmol/g after 5 h of irradiation. The quantum yield and the light to chemical conversion under visible light conditions for the best performing photocatalyst were 1.51% and 0.6%, respectively, which was about 1.5 - fold higher than that obtained in the presence of a simple mixture of the pure starting powders.
Visible light - Driven photocatalytic hydrogen production using Cu2 O/TiO2 composites prepared by facile mechanochemical synthesis
Cimino Stefano;Di Somma Ilaria
2022
Abstract
A visible light - driven photocatalytic hydrogen production system was evaluated for methanol as a sacrificial agent using a Cu2O/TiO2 composite material. A simple ball - milling method was proposed to prepare the Cu2O/TiO2 photocatalyst, focusing on those factors influencing the photocatalytic system through a two-level 3-factorial design approach. The effect of the Cu2O loading and the operating conditions (milling time and rotation rate) for the preparation method were analysed. 1% wt. of Cu2O over TiO2 was identified as the best formulation for the composite catalyst, achieving a maximum hydrogen production of about 1 mmol/g after 5 h of irradiation. The quantum yield and the light to chemical conversion under visible light conditions for the best performing photocatalyst were 1.51% and 0.6%, respectively, which was about 1.5 - fold higher than that obtained in the presence of a simple mixture of the pure starting powders.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.