The natural park of Le Biancane is located in the southern sector of the Larderello-Travale geothermal field (LTGF). It extends over an approximately 100,000 m2 area where the impermeable caprock is locally absent and deep fluids may directly reach the surface. Through a multidisciplinary approach including measurements of soil CO2 flux (total output of 11.5 t day-1), soil temperature (average 34.4 °C), stable isotope and chemical data on fluids from fumaroles (dominated by a mixture of geothermal gases and air or gases from air-saturated meteoric water), and structural analysis of the formation outcropping, we found that anomalous CO2 emissions are positively correlated with shallow temperature anomalies. These are in restricted locations adjacent to vents and fumaroles, where a network of well-connected fractures (preferentially NW-SE and NE-SW orientated and with steep dips) drains efficiently allowing upward migration of the deep fluids and the energy toward the surface.

Shallow portion of an active geothermal system revealed by multidisciplinary studies: the case of Le Biancane (Larderello, Italy)

Scozzari A;Menichini M;Lelli M
2023

Abstract

The natural park of Le Biancane is located in the southern sector of the Larderello-Travale geothermal field (LTGF). It extends over an approximately 100,000 m2 area where the impermeable caprock is locally absent and deep fluids may directly reach the surface. Through a multidisciplinary approach including measurements of soil CO2 flux (total output of 11.5 t day-1), soil temperature (average 34.4 °C), stable isotope and chemical data on fluids from fumaroles (dominated by a mixture of geothermal gases and air or gases from air-saturated meteoric water), and structural analysis of the formation outcropping, we found that anomalous CO2 emissions are positively correlated with shallow temperature anomalies. These are in restricted locations adjacent to vents and fumaroles, where a network of well-connected fractures (preferentially NW-SE and NE-SW orientated and with steep dips) drains efficiently allowing upward migration of the deep fluids and the energy toward the surface.
2023
Istituto di Geoscienze e Georisorse - IGG - Sede Pisa
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Geothermal fields
Geothermal fluids
Fumaroles
Thermal anomalies
File in questo prodotto:
File Dimensione Formato  
prod_474055-doc_193314.pdf

solo utenti autorizzati

Descrizione: ShallowPortionOf
Tipologia: Versione Editoriale (PDF)
Dimensione 19.56 MB
Formato Adobe PDF
19.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_474055-doc_194031.pdf

non disponibili

Descrizione: postprint - ShallowPortionOf
Tipologia: Versione Editoriale (PDF)
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/418246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact