Deep Learning models demonstrated high accuracies performance in malware classification, but they are still lacking "explainability"to ensure robustness and reliability in the generated prediction. In this short contribution, we summarize the researches that we conducted in the latest years in the Malware Analysis field.

Designing Robust Deep Learning Classifiers for Image-based Malware Analysis

Martinelli Fabio;
2022

Abstract

Deep Learning models demonstrated high accuracies performance in malware classification, but they are still lacking "explainability"to ensure robustness and reliability in the generated prediction. In this short contribution, we summarize the researches that we conducted in the latest years in the Malware Analysis field.
2022
9781665471770
component
formatting
insert
style
styling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/418267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact