A methodology, to determine the causal relations between time series and to derive the set of equations describing the interacting systems, has been developed. The techniques proposed are completely data driven and they are based on ensembles of Time Delay Neural Networks (TDNNs) and Symbolic Regression (SR) via Genetic Programming (GP). With regard to the detection of the causal influences and the identification of graphical causal networks, the developed tools have better performances than those reported in the literature. For example, the TDNN ensembles can cope with evolving systems, non-Markovianity, feedback loops and multicausality. In its turn, on the basis of the information derived from the TDNN ensembles, SR via GP permits to identify the set of equations, i.e. the detailed model of the interacting systems. Numerical tests and real life examples from various disciplines prove the power and versatility of the developed tools, capable of handling tens of time series and even images. The excellent results obtained emphasize the importance of recording the time evolution of signals, which would allow a much better understanding of many issues, ranging from the physical to the social and medical sciences.

Combining neural computation and genetic programming for observational causality detection and causal modelling

Murari A;
2022

Abstract

A methodology, to determine the causal relations between time series and to derive the set of equations describing the interacting systems, has been developed. The techniques proposed are completely data driven and they are based on ensembles of Time Delay Neural Networks (TDNNs) and Symbolic Regression (SR) via Genetic Programming (GP). With regard to the detection of the causal influences and the identification of graphical causal networks, the developed tools have better performances than those reported in the literature. For example, the TDNN ensembles can cope with evolving systems, non-Markovianity, feedback loops and multicausality. In its turn, on the basis of the information derived from the TDNN ensembles, SR via GP permits to identify the set of equations, i.e. the detailed model of the interacting systems. Numerical tests and real life examples from various disciplines prove the power and versatility of the developed tools, capable of handling tens of time series and even images. The excellent results obtained emphasize the importance of recording the time evolution of signals, which would allow a much better understanding of many issues, ranging from the physical to the social and medical sciences.
2022
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
Graphical causal networks
Ensembles
Genetic programming
Neural computation
Observational causality detection
Symbolic regres
Time delay neural networks
Time series
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/418286
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 9
social impact