The present study aimed to determine whether autophagy contributes to radiofrequency-induced adaptive response. To this purpose, SH-SY5Y human neuroblastoma cells were exposed for 20 hours to 1950 MHz, UMTS signal, and then treated with menadione, a DNA damage inducer. The results obtained indicated a reduction of menadione-induced DNA damage in samples that were pre-exposed to radiofrequency field, as assessed by the comet assay. Such a reduction was negated when autophagy was inhibited by Bafilomycin A1 and E64d. Moreover, CRISPR SHSY-5Y cell lines defective for ATG7 or ATG5 genes also did not show adaptive response. These findings suggest the involvement of autophagy in the radiofrequency-induced adaptive response, although further investigation is required to extend such observation at molecular level.
Possible role of autophagy in in vitro radiofrequency-induced adaptive response
Sannino A;Scarfi MR;Romeo S;Poeta L;Zeni O
2022
Abstract
The present study aimed to determine whether autophagy contributes to radiofrequency-induced adaptive response. To this purpose, SH-SY5Y human neuroblastoma cells were exposed for 20 hours to 1950 MHz, UMTS signal, and then treated with menadione, a DNA damage inducer. The results obtained indicated a reduction of menadione-induced DNA damage in samples that were pre-exposed to radiofrequency field, as assessed by the comet assay. Such a reduction was negated when autophagy was inhibited by Bafilomycin A1 and E64d. Moreover, CRISPR SHSY-5Y cell lines defective for ATG7 or ATG5 genes also did not show adaptive response. These findings suggest the involvement of autophagy in the radiofrequency-induced adaptive response, although further investigation is required to extend such observation at molecular level.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.