Inviscid flow hydrodynamics provides fast computational models for analysis and design. Ap- plication to marine current turbines implies the development of suitable models to account for viscosity effects that govern turbine operation over a significant range of operating conditions. The aim of the present work is to analyse the capability of the Viscous Flow Correction (VFC) model combined with a Boundary Integral Equa- tion Model (BIEM) to describe onset flow speed effects on turbine thrust and power. Numerical predictions by BIEM-VFC are compared with results of flume tank tests over a speed range from 0.6 to 2.75 m/s on a 500 mm diameter model turbine in the framework of a research project with industrial partners. Results from this comparative study demonstrate that the simple viscosity correction model is able to capture the effect of onset flow speed, with maximum thrust and power predicted within 3% accuracy at 1.2 m/s and higher.

Computational analysis and experimental verification of a Boundary Integral Equation Model for tidal turbines

Zohreh Sarichloo;Francesco Salvatore;Fabio Di Felice;Marcello Costanzo;
2018

Abstract

Inviscid flow hydrodynamics provides fast computational models for analysis and design. Ap- plication to marine current turbines implies the development of suitable models to account for viscosity effects that govern turbine operation over a significant range of operating conditions. The aim of the present work is to analyse the capability of the Viscous Flow Correction (VFC) model combined with a Boundary Integral Equa- tion Model (BIEM) to describe onset flow speed effects on turbine thrust and power. Numerical predictions by BIEM-VFC are compared with results of flume tank tests over a speed range from 0.6 to 2.75 m/s on a 500 mm diameter model turbine in the framework of a research project with industrial partners. Results from this comparative study demonstrate that the simple viscosity correction model is able to capture the effect of onset flow speed, with maximum thrust and power predicted within 3% accuracy at 1.2 m/s and higher.
2018
Istituto di iNgegneria del Mare - INM (ex INSEAN)
9781138585355
Marine Renewable Energy
Tidal turbines
Boundary Element Methods
CFD
Experimental validation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/418557
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact