Spent sulfite liquor, a side-stream from the pulp and paper industry, is an abundantly available carbon source for bio-based platform chemicals. The biotechnological valorization of side streams in biorefineries is hampered by the inability of many microorganisms to metabolize and deal with aldonic acids. Based on the principles of Green Chemistry, the electrochemical reduction of aldonic acids into the corresponding biomass sugars appears as a prospective process for the conversion of these acids into fermentable carbohydrates. In our paper, the investigation of electrochemical reduction of gluconic and xylonic acids into glucose and xylose, respectively, is presented. The proposed mechanism on a gold-coated silver electrode was determined via ReaxFF molecular dynamics simulations and quantum chemistry calculations. Model solutions with an aldonic acid concentration of 2.5 wt % were used for the experiments. Compared to a two-electrode compartment cell, the amounts of glucose and xylose produced in the undivided cell were more than 4 and 5.5 times higher, respectively. The electrode surface was analyzed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Despite the relatively low conversion rate, our results show that electrochemical reduction of aldonic acids into their corresponding aldoses in model solutions is possible, which represents an important step toward side-stream valorization.

Electrocatalytic Reduction of Aldonic Acids to Aldoses on Gold Electrodes

Susanna Monti;Giovanni Barcaro;
2023

Abstract

Spent sulfite liquor, a side-stream from the pulp and paper industry, is an abundantly available carbon source for bio-based platform chemicals. The biotechnological valorization of side streams in biorefineries is hampered by the inability of many microorganisms to metabolize and deal with aldonic acids. Based on the principles of Green Chemistry, the electrochemical reduction of aldonic acids into the corresponding biomass sugars appears as a prospective process for the conversion of these acids into fermentable carbohydrates. In our paper, the investigation of electrochemical reduction of gluconic and xylonic acids into glucose and xylose, respectively, is presented. The proposed mechanism on a gold-coated silver electrode was determined via ReaxFF molecular dynamics simulations and quantum chemistry calculations. Model solutions with an aldonic acid concentration of 2.5 wt % were used for the experiments. Compared to a two-electrode compartment cell, the amounts of glucose and xylose produced in the undivided cell were more than 4 and 5.5 times higher, respectively. The electrode surface was analyzed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Despite the relatively low conversion rate, our results show that electrochemical reduction of aldonic acids into their corresponding aldoses in model solutions is possible, which represents an important step toward side-stream valorization.
2023
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto per i Processi Chimico-Fisici - IPCF
gold
spent sulfite liquor
gluconic acid
xylonic acid
glucose
xylose
File in questo prodotto:
File Dimensione Formato  
prod_475886-doc_194433.pdf

Open Access dal 23/11/2023

Descrizione: “This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of the American Chemical Society, copyright © 2023 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acssuschemeng.2c05576.”
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 8.41 MB
Formato Adobe PDF
8.41 MB Adobe PDF Visualizza/Apri
prod_475886-doc_194521.pdf

solo utenti autorizzati

Descrizione: Electrocatalytic Reduction of Aldonic Acids to Aldoses on Gold Electrodes
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 8.59 MB
Formato Adobe PDF
8.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/418589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact