Au/TiO2 photocatalysts were studied, characterized, and compared for CO2 photocatalytic gas-phase reduction. The impact of the nature of the TiO2 support was studied. It was shown that the surface area/porosity/TiO2 crystal phase/density of specific exposed facets and oxygen vacancies were the key factors determining CH4 productivity under solar-light activation. A 0.84 wt.% Au/TiO2 SG (Sol Gel) calcined at 400 degrees C exhibited the best performance, leading to a continuous mean CH4 production rate of 50 mu mol.h(-1).g(-1) over 5 h, associated with an electronic selectivity of 85%. This high activity was mainly attributed to the large surface area and accessible microporous volume, high density of exposed TiO2 (101) anatase facets, and oxygen vacancies acting as reactive defects sites for CO2 adsorption/activation/dissociation and charge carrier transport.

A Parametric Study of the Crystal Phases on Au/TiO2 Photocatalysts for CO2 Gas-Phase Reduction in the Presence of Water

Fornasiero Paolo;
2022

Abstract

Au/TiO2 photocatalysts were studied, characterized, and compared for CO2 photocatalytic gas-phase reduction. The impact of the nature of the TiO2 support was studied. It was shown that the surface area/porosity/TiO2 crystal phase/density of specific exposed facets and oxygen vacancies were the key factors determining CH4 productivity under solar-light activation. A 0.84 wt.% Au/TiO2 SG (Sol Gel) calcined at 400 degrees C exhibited the best performance, leading to a continuous mean CH4 production rate of 50 mu mol.h(-1).g(-1) over 5 h, associated with an electronic selectivity of 85%. This high activity was mainly attributed to the large surface area and accessible microporous volume, high density of exposed TiO2 (101) anatase facets, and oxygen vacancies acting as reactive defects sites for CO2 adsorption/activation/dissociation and charge carrier transport.
2022
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
CH4 and H-2 production
CO2 photo-reduction
crystalline phases
titanium dioxide
File in questo prodotto:
File Dimensione Formato  
prod_475915-doc_194448.pdf

accesso aperto

Descrizione: A Parametric Study of the Crystal Phases on Au/TiO2 Photocatalysts for CO2 Gas-Phase Reduction in the Presence of Water
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.55 MB
Formato Adobe PDF
3.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/418618
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact