Magnetic and structural properties in multifunctional FSMA (Ferromagnetic Shape Memory Alloys) belonging to Heusler family are frequently related to the occurrence of structural modulation in martensitic phases. The highest MFIS (Magnetic Field Induced Strain) effect has been observed in Ni-Mn-Ga alloys showing martensitic modulated structures. Depending on the composition, pressure and temperature conditions, this periodic structural distortion, consisting of shuffling of atomic layers along specific crystallographic directions, accompanies the martensitic transformation. Over the years, different modulated martensitic structures have been observed and classified depending upon the periodicity of corresponding superstructure (nM with n=3, 5, 6, 7, 12 etc). On the other hand, it has been demonstrated that in most cases such structural modulation is incommensurate and the crystal structure can be solved by applying superspace approach. The crystallographic representation of different modulated structures, obtained by structure refinement on powder diffraction data, suggests a unified description where every different "nM" periodicity can be straightforwardly represented. It will be presented an overview illustrating structural features of several displacive modulated martensitic lattices. For a specific Ni-Mn-Ga composition, the evolution of structural modulation upon temperature change will be illustrated.

Incommensurate and commensurate structural modulation in martensitic phases of FSMA

Albertini F;Paoluzi A;Fabbrici S;Villa E;Besseghini S
2010

Abstract

Magnetic and structural properties in multifunctional FSMA (Ferromagnetic Shape Memory Alloys) belonging to Heusler family are frequently related to the occurrence of structural modulation in martensitic phases. The highest MFIS (Magnetic Field Induced Strain) effect has been observed in Ni-Mn-Ga alloys showing martensitic modulated structures. Depending on the composition, pressure and temperature conditions, this periodic structural distortion, consisting of shuffling of atomic layers along specific crystallographic directions, accompanies the martensitic transformation. Over the years, different modulated martensitic structures have been observed and classified depending upon the periodicity of corresponding superstructure (nM with n=3, 5, 6, 7, 12 etc). On the other hand, it has been demonstrated that in most cases such structural modulation is incommensurate and the crystal structure can be solved by applying superspace approach. The crystallographic representation of different modulated structures, obtained by structure refinement on powder diffraction data, suggests a unified description where every different "nM" periodicity can be straightforwardly represented. It will be presented an overview illustrating structural features of several displacive modulated martensitic lattices. For a specific Ni-Mn-Ga composition, the evolution of structural modulation upon temperature change will be illustrated.
2010
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Ferromagnetic shape memory alloys
martensitic structure
incommensurate modulation
powder diffraction
File in questo prodotto:
File Dimensione Formato  
prod_32908-doc_69859.pdf

non disponibili

Descrizione: Incommensurate and commensurate structural modulation in martensitic phases of FSMA
Dimensione 628.99 kB
Formato Adobe PDF
628.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/41871
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact