Standard vapour phase growth process for ZnO tetrapods has been optimized in order to reach a very large yield, a good reproducibility and a single morphology (tetrapods are separated from the other possible ZnO nanostructures). The large yield of the growth and the simple deposition of these nanostructures on an alumina substrate with contacts and heater, allowed us to realize gas sensor prototypes with a relatively low-cost procedure. The obtained ZnO tetrapods-based gas sensors have been tested with different gases (CH3CH2OH, NO2, CO and H2S) and, especially, response values S = 25 and S = 100 have been measured towards 1 ppm and 5 ppm of hydrogen sulphide, respectively.

Growth of ZnO tetrapods for nanostructure-based gas sensors

Calestani D a;
2010

Abstract

Standard vapour phase growth process for ZnO tetrapods has been optimized in order to reach a very large yield, a good reproducibility and a single morphology (tetrapods are separated from the other possible ZnO nanostructures). The large yield of the growth and the simple deposition of these nanostructures on an alumina substrate with contacts and heater, allowed us to realize gas sensor prototypes with a relatively low-cost procedure. The obtained ZnO tetrapods-based gas sensors have been tested with different gases (CH3CH2OH, NO2, CO and H2S) and, especially, response values S = 25 and S = 100 have been measured towards 1 ppm and 5 ppm of hydrogen sulphide, respectively.
2010
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Nanoscale materials and structures: fabrication
Gas sensors
Crystal growth from vapors
tetrapods
ZnO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/41879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 184
  • ???jsp.display-item.citation.isi??? 173
social impact