We report on the realization of Distributed Feedback (DFB) lasing by a high-resolution reflection grating integrated in a Photomobile Polymer (PMP) film. The grating is recorded in a recently developed holographic mixture basically containing halolakanes/acrylates and a fluorescent dye molecule (Rhodamine 6G). The PMP-mixture is placed around the grating spot and a subsequent curing/photo-polymerization process is promoted by UV-irradiation. Such a process brings to the simultaneous formation of the PMP-film and the covalent link of the PMP-film to the DFB-grating area (PMP-DFB system). The PMP-DFB allows lasing action when optically pumped with a nano-pulsed green laser source. Moreover, under a low-power light-irradiation the PMP-DFB bends inducing a spatial readdressing of the DFB-laser emission. This device is the first example of a light-controlled direction of a DFB laser emission. It could represent a novel disruptive optical technology in many fields of Science, making feasible the approach to free standing and light-controllable lasers.
Light-Controlled Direction of Distributed Feedback Laser Emission by Photo-Mobile Polymer Films
Castagna R
2022
Abstract
We report on the realization of Distributed Feedback (DFB) lasing by a high-resolution reflection grating integrated in a Photomobile Polymer (PMP) film. The grating is recorded in a recently developed holographic mixture basically containing halolakanes/acrylates and a fluorescent dye molecule (Rhodamine 6G). The PMP-mixture is placed around the grating spot and a subsequent curing/photo-polymerization process is promoted by UV-irradiation. Such a process brings to the simultaneous formation of the PMP-film and the covalent link of the PMP-film to the DFB-grating area (PMP-DFB system). The PMP-DFB allows lasing action when optically pumped with a nano-pulsed green laser source. Moreover, under a low-power light-irradiation the PMP-DFB bends inducing a spatial readdressing of the DFB-laser emission. This device is the first example of a light-controlled direction of a DFB laser emission. It could represent a novel disruptive optical technology in many fields of Science, making feasible the approach to free standing and light-controllable lasers.File | Dimensione | Formato | |
---|---|---|---|
prod_476403-doc_194707.pdf
accesso aperto
Descrizione: Light-Controlled Direction of Distributed Feedback Laser Emission by Photo-Mobile Polymer Films
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.38 MB
Formato
Adobe PDF
|
2.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.