In this work the mechanism of L-lactide polymerization promoted by NSSN zirconium complexes was investigated through DFT methods with the aim to understand as the electronic and steric features of the ligand affect the energy reaction. It was observed that the rate determining step of the process is the opening of the L-lactide ring and that by increasing the steric hindrance, evaluated by changing geometric parameters and topographic steric maps, or the electron-withdrawing properties of the ligand, the corresponding energy barrier increases. On the other hand, calculations foresee that a small and electron-releasing substituent on the nitrogen atom of the ligand, such as the methyl group, is desirable in order to obtain NSSN zirconium based catalysts with improved activity in the ROP of the L-lactide.
Electronic and Steric Effects on L-Lactide Ring-Opening Polymerization with NSSN-type Zr(IV) Complexes
Maria Voccia;Salvatore Impemba;Matteo Farnesi Camellone;
2023
Abstract
In this work the mechanism of L-lactide polymerization promoted by NSSN zirconium complexes was investigated through DFT methods with the aim to understand as the electronic and steric features of the ligand affect the energy reaction. It was observed that the rate determining step of the process is the opening of the L-lactide ring and that by increasing the steric hindrance, evaluated by changing geometric parameters and topographic steric maps, or the electron-withdrawing properties of the ligand, the corresponding energy barrier increases. On the other hand, calculations foresee that a small and electron-releasing substituent on the nitrogen atom of the ligand, such as the methyl group, is desirable in order to obtain NSSN zirconium based catalysts with improved activity in the ROP of the L-lactide.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.