Dark currents, including those in the surface and bulk, are the leading source of electronic noise in X-ray and gamma detectors, and are responsible for degrading a detector's energy resolution. The detector material itself determines the bulk leakage current; however, the surface leakage current is controllable by depositing appropriate passivation layers. In previous research, we demonstrated the effectiveness of surface passivation in CZT (CdZnTe) and CMT (CdMnTe) materials using ammonium sulfide and ammonium fluoride. In this research, we measured the effect of such passivation on the surface states of these materials, and on the performances of detectors made from them.

Detector performance of ammonium-sulfide-passivated CdZnTe and CdMnTe materials

2010

Abstract

Dark currents, including those in the surface and bulk, are the leading source of electronic noise in X-ray and gamma detectors, and are responsible for degrading a detector's energy resolution. The detector material itself determines the bulk leakage current; however, the surface leakage current is controllable by depositing appropriate passivation layers. In previous research, we demonstrated the effectiveness of surface passivation in CZT (CdZnTe) and CMT (CdMnTe) materials using ammonium sulfide and ammonium fluoride. In this research, we measured the effect of such passivation on the surface states of these materials, and on the performances of detectors made from them.
2010
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Passivation
CdZnTe
CdMnTe
ammonium sulfide
leakage current
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/41892
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact