Multipolar refinements of structural models fitting extensive sets of X-ray diffraction (XRD) data from single crystals of 1,3-bis(dimethylamino)squaraine [SQ, C8H12N2O2] and its dihydrate [SQDH, C8H12N2O2 center dot 2H(2)O], collected at very low T (18 +/- 1 K for SQ, 20 +/- 1 K for SQDH), led to an accurate description of their crystal electron density distributions. Atomic volumes and charges have been estimated from the experimental charge densities using the Quantum Theory of Atoms in Molecules (QTAIM) formalism. Our analysis confirms the common representation (in the literature and textbooks) of the squaraine central, four-membered squarylium ring as carrying two positive charges, a representation that has been recently questioned by some theoretical calculations: the integrated total charge on the C4 fragment is estimated as ca. +2.4e in SQ and +2.2e in SQDH. The topology of the experimental electron density for the SQ squaraine molecule is modified in the dihydrated crystal by interactions between the methyl groups and the H2O molecules in the crystal. Maps of the molecular electrostatic potential in the main molecular planes in both crystals clearly reveal the quadrupolar charge distribution of the squaraine molecules. Molecular quadrupole tensors, as calculated with the PAMoC package using both Stewart and QTAIM distributed multipole analysis (DMA), are the same within experimental error.
Experimental Charge Density Analysis and Electrostatic Properties of Crystalline 1,3-Bis(Dimethylamino)Squaraine and Its Dihydrate from Low Temperature (T=18 and 20 K) XRD Data
Roversi Pietro;Soave Raffaella;
2020
Abstract
Multipolar refinements of structural models fitting extensive sets of X-ray diffraction (XRD) data from single crystals of 1,3-bis(dimethylamino)squaraine [SQ, C8H12N2O2] and its dihydrate [SQDH, C8H12N2O2 center dot 2H(2)O], collected at very low T (18 +/- 1 K for SQ, 20 +/- 1 K for SQDH), led to an accurate description of their crystal electron density distributions. Atomic volumes and charges have been estimated from the experimental charge densities using the Quantum Theory of Atoms in Molecules (QTAIM) formalism. Our analysis confirms the common representation (in the literature and textbooks) of the squaraine central, four-membered squarylium ring as carrying two positive charges, a representation that has been recently questioned by some theoretical calculations: the integrated total charge on the C4 fragment is estimated as ca. +2.4e in SQ and +2.2e in SQDH. The topology of the experimental electron density for the SQ squaraine molecule is modified in the dihydrated crystal by interactions between the methyl groups and the H2O molecules in the crystal. Maps of the molecular electrostatic potential in the main molecular planes in both crystals clearly reveal the quadrupolar charge distribution of the squaraine molecules. Molecular quadrupole tensors, as calculated with the PAMoC package using both Stewart and QTAIM distributed multipole analysis (DMA), are the same within experimental error.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.