We study the short-time dynamics (STD) of the Vicsek model (VM) with vector noise. The study of STD has proved to be very useful in the determination of the critical point, critical exponents and spinodal points in equilibrium phase transitions. Here we aim is to test its applicability in active systems. We find that, despite the essential non-equilibrium characteristics of the VM (absence of detailed balance, activity), the STD presents qualitatively the same phenomenology as in equilibrium systems. From the STD one can distinguish whether the transition is continuous or discontinuous (which we have checked also computing the Binder cumulant). When the transition is continuous, one can determine the critical point and the critical exponents.
Short-time dynamics in active systems: the Vicsek model
2022
Abstract
We study the short-time dynamics (STD) of the Vicsek model (VM) with vector noise. The study of STD has proved to be very useful in the determination of the critical point, critical exponents and spinodal points in equilibrium phase transitions. Here we aim is to test its applicability in active systems. We find that, despite the essential non-equilibrium characteristics of the VM (absence of detailed balance, activity), the STD presents qualitatively the same phenomenology as in equilibrium systems. From the STD one can distinguish whether the transition is continuous or discontinuous (which we have checked also computing the Binder cumulant). When the transition is continuous, one can determine the critical point and the critical exponents.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.